期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Measuring the Interfacial Thickness of Immiscible Polymer Blends by Nano-probing of Atomic Force Microscopy
1
作者 Tian-Tian Li Si-Bo Cheng +3 位作者 Lian-Fang Feng Xue-Ping Gu Cai-Liang Zhang Guo-Hua Hu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第4期421-430,共10页
Immiscible polymer blends are an important family of polymer materials.The interfacial thickness between different phases is a very important parameter that dictates,to a great extent,the morphology and properties of ... Immiscible polymer blends are an important family of polymer materials.The interfacial thickness between different phases is a very important parameter that dictates,to a great extent,the morphology and properties of such a blend.This work explores and optimizes an up-to-date atomic force microscopy(AFM)of type NanoIR2^(TM) system in order to quantitatively measure the interfacial thickness of immiscible polymer blends.This system is equipped with two nano-probes capable of detecting the response of a material to an infrared pulse called AFM-infrared spectroscopy mode(AFM-IR)or conducting resonance called AFM-Lorentz Contact Resonance mode(AFM-LCR),respectively.Its potential for quantitatively measuring the interfacial thickness of immiscible polymer blends is evaluated using blends composed of polyamide 6(PA6)and polyolefin elastomer(POE)in the presence or absence of a POE containing maleic anhydride(POE-g-MAH)as a compatibilizer.Surface roughness affects adversely the signal intensity and consequently an accurate measurement of the interfacial thickness.Optimum sample surface preparation procedures are proposed. 展开更多
关键词 Polymer blends interfacial thickness Atomic force microscopy Nano-probing Surface roughness
原文传递
Impact of nitrogen plasma passivation on the interface of germanium MOS capacitor
2
作者 云全新 黎明 +9 位作者 安霞 林猛 刘朋强 李志强 张冰馨 夏宇轩 张浩 张兴 黄如 王阳元 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期616-619,共4页
Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD).... Nitrogen plasma passivation (NPP) on (111) germanium (Ge) was studied in terms of the interface trap density, roughness, and interfacial layer thickness using plasma-enhanced chemical vapor deposition (PECVD). The results show that NPP not only reduces the interface states, but also improves the surface roughness of Ge, which is beneficial for suppressing the channel scattering at both low and high field regions of Ge MOSFETs. However, the interracial layer thickness is also increased by the NPP treatment, which will impact the equivalent oxide thickness (EOT) scaling and thus degrade the device performance gain from the improvement of the surface morphology and the interface passivation. To obtain better device performance of Ge MOSFETs, suppressing the interfacial layer regrowth as well as a trade-off with reducing the interface states and roughness should be considered carefully when using the NPP process. 展开更多
关键词 GERMANIUM ROUGHNESS interface trap density interfacial layer thickness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部