期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
1
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N_(2) electroreduction activity 被引量:1
2
作者 Xiaoxue Zhang Yuehan Cao +8 位作者 Zhen-Feng Huang Shishi Zhang Chengguang Liu Lun Pan Chengxiang Shi Xiangwen Zhang Ying Zhou Guidong Yang Ji-Jun Zou 《Carbon Energy》 SCIE CSCD 2023年第2期193-200,共8页
The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,wh... The Haber-Bosch process for industrial NH_(3) production is energy-intensive with heavy CO_(2) emissions.Electrochemical N_(2) reduction reaction(NRR)is an attractive carbon-neutral alternative for NH_(3) synthesis,while the challenge associated with N_(2) activation highlights the demand for efficient electrocatalysts.Herein,we demonstrate that PdCu nanoparticles with different Pd/Cu ratios anchored on boron nanosheet(PdCu/B)behave as efficient NRR electrocatalysts toward NH_(3) synthesis.Theoretical and experimental results confirm that the highly efficient NH_(3) synthesis can be achieved by regulating the charge transfer between interfaces and forming a symmetry-breaking site,which not only alleviates the hydrogen evolution but also changes the adsorption configuration of N_(2) and thus optimizes the reaction pathway of NRR over the separated Pd sites.Compared with monometallic Pd/B and Cu/B,the PdCu/B with the optimized Pd/Cu ratio of 1 exhibits superior activity and selectivity for NH_(3) synthesis.This study provides new insight into developing efficient catalysts for small energy molecule catalytic conversion via regulating the charge transfer between interfaces and constructing symmetry-breaking sites. 展开更多
关键词 catalyst design electrochemical N_(2)reduction interfacial charge transfer reaction mechanism symmetry-breaking sites
下载PDF
Activating coordinative conjugated polymer via interfacial electron transfer for efficient CO_(2) electroreduction
3
作者 Jing Zhang Jia-Jun Dai +13 位作者 De-Quan Cao Heng Xu Xing-Yu Ding Chun-Hua Zhen Beate Paulus Jin-Yu Ye Qian Liang Jun-Ke Liu Shi-Jun Xie Sai-Sai Deng Zhen Wang Jun-Tao Li Yao Zhou Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期313-323,I0009,共12页
With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative... With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2). 展开更多
关键词 Metal-organic solid compounds Conjugated coordinative polymer Solid-solid interfacial electron transfer MN_(4)sites ELECTROCATALYSIS
下载PDF
Determination of interfacial heat transfer coefficient and its application in high pressure die casting process 被引量:6
4
作者 Cao Yongyou Guo Zhipeng Xiong Shoumei 《China Foundry》 SCIE CAS 2014年第4期314-321,共8页
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin... In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found. 展开更多
关键词 high pressure die casting interfacial heat transfer coefficient inverse method
下载PDF
Interfacial stress transfer behavior in a specially-shaped fiber/matrix pullout test 被引量:2
5
作者 Y. R. Zhao Y. M. Xing +1 位作者 Z. K. Lei F. C. Lang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期113-119,共7页
Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial ... Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial shear stress transfer behavior on both sides of the specially designed fiber when it is being pulled out; in which automatic analysis of three-dimensional photoelasticity is employed and the finite element method is adopted. The results show that the stress transfer occurs mainly in the region near the fiber's embedded end where the stress reaches its critical point, leading to debonding of the interface. Before debonding, as the pullout loading increases, the peak value of shear stress transfers along the fiber from the embedded end to the interior of the matrix, and then stops at the hooked part of the fiber because of its impediment. When the interface begins to debond as the load increases, the shear stress can be transferred to the hooked part. 展开更多
关键词 Fiber-reinforced composites Specially-shaped fiber interfacial stress transfer Photo-elasticity - FEM
下载PDF
A study of metal/die interfacial heat transfer behavior of vacuum die cast pure copper 被引量:1
6
作者 Hong-mei Yang Zhou-meng Pu +2 位作者 Zhi-peng Guo Ang Zhang Shou-mei Xiong 《China Foundry》 SCIE 2020年第3期206-211,共6页
High pressure die casting copper is used to produce rotors for induction motors to improve efficiency.Experiments were carried out for a special"step-shape"casting with different step thicknesses.Based on th... High pressure die casting copper is used to produce rotors for induction motors to improve efficiency.Experiments were carried out for a special"step-shape"casting with different step thicknesses.Based on the measured temperature inside the die,the interfacial heat transfer coefficient(IHTC)at the metal/die interface during vacuum die casting was evaluated by solving the inverse problem.The IHTC peak value was 4.5×10^3-11×10^3 W·m^-2·K^-1 under the basic operation condition.The influences of casting pressure,fast shot speed,pouring temperature and initial die surface temperature on the IHTC peak values were investigated.Results show that a greater casting pressure and faster shot speed could only increase the IHTC peak values at the location close to the ingate.An increase of pouring temperature and/or initial die surface temperature significantly increases the IHTC peak values. 展开更多
关键词 vacuum die casting interfacial heat transfer behavior inverse method copper metal/die interface
下载PDF
Optimal Experiment Design for the Identification of the Interfacial Heat Transfer Coefficient in Sand Casting
7
作者 Dorsaf Khalifa Foued Mzali 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1841-1852,共12页
The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its ... The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm. 展开更多
关键词 Monte Carlo interfacial heat transfer coefficient Levenberg Marquard optimal experiment design sand casting
下载PDF
Interfacial Charge Transfer Induced Electronic Property Tuning of MoS_2 by Molecular Functionalization
8
作者 周思含 周春伟 +3 位作者 杨向东 李阳 钟建强 毛宏颖 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第5期94-98,共5页
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec... The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices. 展开更多
关键词 interfacial Charge transfer Induced Electronic Property Tuning of MoS_2 by Molecular Functionalization
下载PDF
Rational Design of LDH/Zn_(2)SnO_(4) Heterostructures for Efficient Mineralization of Toluene Through Boosted Interfacial Charge Separation
9
作者 Ben Lei Wen Cui +4 位作者 Peng Chen Ruimin Chen Yanjuan Sun Ki-Hyun Kim Fan Dong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期317-324,共8页
It is crucial to efficiently separate and transport photo-induced charge carriers for the effective implementation of photocatalysis toward environmental remediation.A rational design strategy is proposed to validate ... It is crucial to efficiently separate and transport photo-induced charge carriers for the effective implementation of photocatalysis toward environmental remediation.A rational design strategy is proposed to validate such proposition through the construction of an interfacial structure in the form of LDH/Zn_(2)SnO_(4) heterostructures in this research.The interfacial charge transfer on LDH/Zn_(2)SnO_(4) is greatly promoted via the unique charge transfer pathway,as characterized by transient photocurrent responses,X-ray photoelectron spectroscopy,electron paramagnetic resonance spectrum,and photoluminescence analysis.As such,it contributes to the generation of reactive oxygen species(ROS)and the activation of reactants for the mineralization of toluene.According to the in situ DRIFTS spectra analysis,the accumulation of benzoic acid takes place possibly through the partial oxidation of the methyl group on toluene at the interface of the LDH/Zn 2 SnO 4 heterostructure.This process can greatly promote the photocatalytic oxidation of toluene with the enhanced ring-opening efficiency.The LDH/Zn 2 SnO 4 is thus demonstrated as superior photocatalyst against toluene(removal efficiency of 89.5%;mineralization of 83.1%;and quantum efficiency of 4.55×10^(−6) molecules/photon).As such,the performance of this composite far exceeds that of their individual components(e.g.,P25,pure Mg-Al LDH,or Zn_(2)SnO_(4)).This study is expected to offer a new path to the interfacial charge transfer mechanism based on the design of highly efficient photocatalysts for air purification. 展开更多
关键词 HETEROSTRUCTURE interfacial charge transfer photocatalysis toluene degradation
下载PDF
Atomic-level coupled RuO_(2)/BaRuO_(3) heterostructure for efficient alkaline hydrogen evolution reaction
10
作者 Yueying Yan Tian Meng +4 位作者 Yuting Chen Yang Yang Dewen Wang Zhicai Xing Xiurong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期356-362,I0009,共8页
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b... The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces. 展开更多
关键词 HETEROSTRUCTURE Hydrogen evolution reaction interfacial electron transfer Oxygen vacancies
下载PDF
Evolution of interfacial heat transfer,contact behavior and microstructure during sub-rapid solidification of molten steel with different hydrogen contents
11
作者 Cheng Lu Wan-lin Wang +3 位作者 Chen-yang Zhu Jie Zeng Xin-yuan Liu Hua-long Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第1期215-223,共9页
Typical Q235 low-carbon steel samples with different hydrogen contents(0.0004,0.0008,and 0.0013 wt.%)were prepared by adjusting the environment humidity and moisture.The effects of hydrogen on interfacial heat transfe... Typical Q235 low-carbon steel samples with different hydrogen contents(0.0004,0.0008,and 0.0013 wt.%)were prepared by adjusting the environment humidity and moisture.The effects of hydrogen on interfacial heat transfer,contact behavior,and microstructure evolution were investigated using a novel droplet solidification technique.The results revealed that when the hydrogen content increases from 0.0004 to 0.0013 wt.%,the maximum heat flux between the molten steel and cooling substrate decreases from 8.01 to 6.19 MW/m^(2),and the total heat removed in the initial 2 s reduces from 10.30 to 8.27 MJ/m^(2).Moreover,the final contact angle between the molten steel and substrate increases from 103.741°to 113.697°,and the number of pores on the droplet bottom surface increases significantly from 21 to 210 with the increase in hydrogen.The surface roughness of the droplet bottom surface increases from 20.902 to 49.181 pm.In addition,the average grain size of the droplet increases from 14.778 to 33.548 pm with the increase in the hydrogen content.The interfacial contact condition becomes worse due to the escape of hydrogen from the steel matrix during the cooling process,which leads to the reduction in the interfacial heat transfer and the increase in the grain size. 展开更多
关键词 Strip casting Hydrogen content interfacial heat transfer behavior Contact behavior Microstructure evolution
原文传递
Rationally construction of atomic-precise interfacial charge transfer channel and strong build-in electric field in nanocluster-based Zscheme heterojunctions with enhanced photocatalytic hydrogen production
12
作者 Qingtao Zhu Honglei Shen +5 位作者 Chao Han Liu Huang Yanting Zhou Yuanxin Du Xi Kang Manzhou Zhu 《Nano Research》 SCIE EI CSCD 2024年第6期5002-5010,共9页
The lack of effective charge transfer driving force and channel limits the electron directional migration in nanoclusters(NC)-based heterostructures,resulting in poor photocatalytic performance.Herein,a Z-scheme NC-ba... The lack of effective charge transfer driving force and channel limits the electron directional migration in nanoclusters(NC)-based heterostructures,resulting in poor photocatalytic performance.Herein,a Z-scheme NC-based heterojunction(Pt1Ag28-BTT/CoP,BTT=1,3,5-benzenetrithiol)with strong internal electric field is constructed via interfacial Co-S bond,which exhibits an absolutely superiority in photocatalytic performance with 24.89 mmol·h^(−1)·g−1 H_(2)production rate,25.77%apparent quantum yield at 420 nm,and~100%activity retention in stability,compared with Pt1Ag28-BDT/CoP(BDT=1,3-benzenedithiol),Ag29-BDT/CoP,and CoP.The enhanced catalytic performance is contributed by the dual modulation strategy of inner core and outer shell of NC,wherein,the center Pt single atom doping regulates the band structure of NC to match well with CoP,builds internal electric field,and then drives photogenerated electrons steering;the accurate surface S modification promotes the formation of Co-S atomic-precise interface channel for further high-efficient Z-scheme charge directional migration.This work opens a new avenue for designing NC-based heterojunction with matchable band structure and valid interfacial charge transfer. 展开更多
关键词 atomically precise metal nanocluster Z-scheme heterojunction interfacial charge transfer build-in electric field photocatalytic hydrogen production
原文传递
PHYSICAL SIMULATION OF INTERFACIAL CONDITIONS IN HOT FORMING OF STEELS 被引量:8
13
作者 Y. H. Li M. Krzyzanowski J. H. Beynon and C. M. Sellars IMMPETUS( Institute for Microstructural and Mechanical Process Engineering: The University of Sheffield, Sheffield SI 3JD, UK) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期359-368,共10页
In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling ... In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling of steels. Emphasis has been placed on the influence of the oxide scale which forms on the steel workpiece. In the present paper, the experimental methods used for investigating interfacial heat transfer and friction conditions are described. Theses include hot flat rolling of steel slabs and hot axi- symmetric forging of steel cylinders and rings.Temperature measurements and computations demon- strate that for similar conditions, similar conditions, the effective interfacial heat transfer coefficients (IHTC) derived for hot rolling are significantly higher than those for forging, mainly due to the contribution of scale cracking during rolling. On the basis of experimental observations and numerical analysis,physical models for interfacial heat transfer in forging and rolling have been established. In addition, hot' sandwich' rolling and hot tensile tests with finite element modelling have been carried out to evaluate the hot ductility of the oxide scale.The results indicate that the defomation, cracking and decohesion behaviour of the oxide scale depend on deformation temperature, strain and relative strengths of the scale layer and scale - steel interface.Finaly, friction results from hot ring compression tests and from hot rolling with forward/backward slip measurements are reported. 展开更多
关键词 interfacial heat transfer friction oxide scale hot rolling hot forging hot tensile testing
下载PDF
Light-Induced Charge Transfer at Interface Between Lipid-Free RhTSPc Film and p-Si(111)
14
作者 LIU Wang and LI Tie-jin (Department of Chemistry, Jilin University, Changchun, 130023)LIU Yan-jing and ZHU Zi-qiang (Department of Physics, Henan University, Kaifeng, 475001) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1992年第2期99-103,共5页
The present paper covers the lipid-free rhodium tetrasulfonato-phthalocyanine (RhTSPc) films prepared on p-Si(111) by using Langmuir-Blodgett technique. Their surface photovoltage spectra were measured. It was found t... The present paper covers the lipid-free rhodium tetrasulfonato-phthalocyanine (RhTSPc) films prepared on p-Si(111) by using Langmuir-Blodgett technique. Their surface photovoltage spectra were measured. It was found that there is a strong interaction at the interface between the RhTSPc film and p-Si (111) and that the surface photovoltaic effect of the film system is maximum when only one monolayer of RhTSPc molecules coats p-Si(111), which is similar to that of CuTSPc films on p-Si(111) reported previously. These results confirm that only the monolayer of dye molecules being adjacent to the semiconductor surface plays a key role in the light-induced interfacial charge transfer process. 展开更多
关键词 Rodium tetrasulfonato-phthalocyanine LB film Surface photovoltage spectroscopy Light-induced interfacial charge transfer
下载PDF
Heat Transfer between Casting and Die during High Pressure Die Casting Process of AM50 Alloy-Modeling and Experimental Results
15
作者 Zhipeng GUO Shoumei XIONG +1 位作者 Sang-Hyun Cho Jeong-Kil Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期131-135,共5页
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas... A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses. 展开更多
关键词 interfacial heat transfer coefficient High pressure die casting process AM50 Magnesium alloy
下载PDF
D^(6h)Symmetric Radical Donor-Acceptor Nanographene Modulated Interfacial Carrier Transfer for High-Performance Perovskite Solar Cells
16
作者 Can Wang Yifeng Gao +10 位作者 Zhen-Lin Qiu Ping-Ping Sun Naoyuki Shibayama Zilong Zhang Qiu Xiong Fangbin Ren Shui-Yang Lien Lusheng Liang Jiaoxia Zhang Yuan-Zhi Tan Peng Gao 《CCS Chemistry》 CSCD 2023年第9期2159-2170,共12页
Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an eff... Imbalanced charge-carrier extraction remains an issue aggravating interfacial charge accumulation and recombination.More hopping transport channels could accelerate the extraction of charge.Here,we demonstrated an effective“bridging interface”strategy between the perovskite/2,2′,7,7′-tetrakis(N,N-di-pmethoxyphenylamine)-9,9′-spirobifluorene(spiro-OMeTAD)that modulates interfacial charge transfer and improves hole mobility using radical-containing donor-acceptor nanographenes(D-A NGs)possessing electron-deficient perchlorinated NGs and electron-rich aniline derivatives.The fully delocalized backbone of nanographene formed a conjugated bridge for intermolecular charge transfer and generated stable radical cations,verified by electron spin resonance.Lamellar andπ-πstacking orientation of D-A NGs also provided advantageous hopping transport channels.Besides favorable charge transfer within D-A NGs,systematic explorations indicated a strong interface coupling and noticeable charge transfer across the D-A NGs and perovskite interface,where electrons would flow from D-A NGs to perovskite,and holes would flow from perovskite to D-A NGs.Moreover,the hole mobility of spiro-OMeTAD was also enhanced because the D-A NGs would diffuse into the spiro-OMeTAD layer.As a result,planar n-i-p perovskite solar cellsmodified byD-ANG-OMe/D-ANG-tBudeliveredchampion power conversion efficiencies(PCEs)of 23.25%and 23.51%,respectively. 展开更多
关键词 perovskite solar cell RADICALS donor-acceptor nanographene hole mobility interfacial charge transfer
原文传递
Controlling upconversion through interfacial energy transfer(IET):Fundamentals and applications 被引量:10
17
作者 Bo Zhou Qiqing Li +1 位作者 Long Yan Qinynuan Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第5期474-482,共9页
Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeit... Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeiting.A smart control and manipulation of the upconversion luminescence has always been a key topic,however,to date the most efficient mechanism for upconversion nanoparticles remains the energy transfer upconversion and recently reported energy migration mediated upconversion.Recently,we found that the interfacial energy transfer(IET)is also an efficient approach for enabling and tuning photon upconversion of lanthanide ions.Moreover,it can be used for the mechanistic understanding of the interionic interactions such as energy transfer and energy migration on the nanoscale.In this review,the recent advances of the research on the IET are summarized,the principles for designing IET process and typical examples are discussed together with its applications in both mechanistic research and frontier information security.The challenges and perspectives for future research are also commented. 展开更多
关键词 Photon upconversion interfacial energy transfer Core-shell nanostructure Rare earth ions
原文传递
Thermal Response of Mould in High Speed Casting of Stainless Steel Billet 被引量:3
18
作者 WANG Bao-feng SAMARASEKERA I V 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2002年第2期15-20,共6页
The hot rolling of slab was studied with the aid of elastic plastic and thermomechanical couple FEM. On the basis of experiment and numerical analysis, the physical models for interfacial heat transfer during hot rol... The hot rolling of slab was studied with the aid of elastic plastic and thermomechanical couple FEM. On the basis of experiment and numerical analysis, the physical models for interfacial heat transfer during hot rolling were established. The results indicated that the deformation, cracking and decohesion behavior of the oxide scale have considerable effects on temperature distribution of slab during hot rolling. 展开更多
关键词 interfacial heat transfer oxide scale temperature distribution hot rolling
下载PDF
Anisotropic diffusion of volatile pollutants at air-water interface 被引量:2
19
作者 Li-ping CHEN Jing-tao CHENG Guang-fa DENG 《Water Science and Engineering》 EI CAS CSCD 2013年第2期153-163,共11页
The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the d... The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HC13) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer. 展开更多
关键词 volatile pollutant interfacial mass transfer anisotropic diffusion STDS anisotropic coupling diffusion model
下载PDF
Redox-assisted Li^+-storage in lithium-ion batteries 被引量:1
20
作者 黄启昭 王庆 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期198-204,共7页
Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+ ) and ionic species (Li+) at the electrode-e... Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+ ) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. 展开更多
关键词 ENERGETICS interfacial charge transfer molecular wiring lithium-ion battery
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部