The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circu...The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.展开更多
Affected by the natural environmental and human activity factors,significant seasonal differences appear on the regional scattering characteristic and ground deformation of saline soil.Interferometric decorrelation du...Affected by the natural environmental and human activity factors,significant seasonal differences appear on the regional scattering characteristic and ground deformation of saline soil.Interferometric decorrelation due to season replacement limits the conventional multi-temporal interferometric synthetic aperture radar(MT-InSAR)technique and its application in such areas.To extend the monitoring capability in the salt desert area,we select a vast basin of saline soil around Howz-e-Soltan Salt Lake of Iran as the study area and present an improved MTInSAR for experimental research.Based on 131 C-band Sentinel-1 A images collected between October 2014 to July 2020,1896 refined interferograms in total are selected from all interferogram candidates.Interferometric coherence analysis shows that the coherence in the saline soil area has an apparent seasonal variation,and the soil moisture affected by the precipitation may be the main factor that leads to the seasonal variation.Subsequently,the deformation characteristics of saline soil under different environmental conditions and human activity factors are compared and analyzed in detail.Related deformation mechanisms of different saline soil types are initially revealed by combining interferometric coherence,meteorological data,and engineering geological characteristics of saline soil.Related results would provide reference for the large-scale infrastructure construction engineering in similar saline soil areas.展开更多
The objective of this work was to evaluate the sensitivity of three different satellite signals (interferometric coherence (γ), backscattering coefficient (σ<sup>0</sup>) and NDVI) to corn biophysical pa...The objective of this work was to evaluate the sensitivity of three different satellite signals (interferometric coherence (γ), backscattering coefficient (σ<sup>0</sup>) and NDVI) to corn biophysical parameters (leaf area index, height, biomass and water content) throughout its entire vegetation cycle. All of the satellite and in situ data were collected during the Multi-spectral Crop Monitoring (MCM’10) experiment conducted in 2010 by the CESBIO Laboratory over eight different agricultural sites located in southwestern France. The results demonstrated that the NDVI is well adapted for leaf area index monitoring, whereas γ<sub>27.3°</sub> is much more suited to the estimation of the three other Biophysical Parameters throughout the entire crop cycle, with a coefficient of determination ranging from 0.83 to 0.99, using non-linear relationships. Moreover, contrary to the use of the NDVI or backscattering coefficients, the use of coherence exhibited a low sensitivity to the changes in vegetation and soil moisture occurring during senescence, offering interesting perspectives in the domain of applied remote sensing展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.
基金supported by the National Natural Science Foundation of China(41771402,41804009)the National Key R&D Program of China(2017YFB0502700)Sichuan Science and Technology Program(2018JY0564,2019ZDZX0042,2020JDTD0003)。
文摘Affected by the natural environmental and human activity factors,significant seasonal differences appear on the regional scattering characteristic and ground deformation of saline soil.Interferometric decorrelation due to season replacement limits the conventional multi-temporal interferometric synthetic aperture radar(MT-InSAR)technique and its application in such areas.To extend the monitoring capability in the salt desert area,we select a vast basin of saline soil around Howz-e-Soltan Salt Lake of Iran as the study area and present an improved MTInSAR for experimental research.Based on 131 C-band Sentinel-1 A images collected between October 2014 to July 2020,1896 refined interferograms in total are selected from all interferogram candidates.Interferometric coherence analysis shows that the coherence in the saline soil area has an apparent seasonal variation,and the soil moisture affected by the precipitation may be the main factor that leads to the seasonal variation.Subsequently,the deformation characteristics of saline soil under different environmental conditions and human activity factors are compared and analyzed in detail.Related deformation mechanisms of different saline soil types are initially revealed by combining interferometric coherence,meteorological data,and engineering geological characteristics of saline soil.Related results would provide reference for the large-scale infrastructure construction engineering in similar saline soil areas.
文摘The objective of this work was to evaluate the sensitivity of three different satellite signals (interferometric coherence (γ), backscattering coefficient (σ<sup>0</sup>) and NDVI) to corn biophysical parameters (leaf area index, height, biomass and water content) throughout its entire vegetation cycle. All of the satellite and in situ data were collected during the Multi-spectral Crop Monitoring (MCM’10) experiment conducted in 2010 by the CESBIO Laboratory over eight different agricultural sites located in southwestern France. The results demonstrated that the NDVI is well adapted for leaf area index monitoring, whereas γ<sub>27.3°</sub> is much more suited to the estimation of the three other Biophysical Parameters throughout the entire crop cycle, with a coefficient of determination ranging from 0.83 to 0.99, using non-linear relationships. Moreover, contrary to the use of the NDVI or backscattering coefficients, the use of coherence exhibited a low sensitivity to the changes in vegetation and soil moisture occurring during senescence, offering interesting perspectives in the domain of applied remote sensing