Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
Chronic active hepatitis(CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma.The histological end points of CAH are chronic inflammation,fibrosis and cirr...Chronic active hepatitis(CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma.The histological end points of CAH are chronic inflammation,fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers.The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis,inflammation and cytokine production and liver scaring(fibrosis).The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components.The viral and cellular factors that contribute to liver injury are discussed in this article.Liver injury caused by the viral infection affects many cellular processes such as cell signaling,apoptosis,transcription,DNA repair which in turn induce radical effects on cell survival,growth,transformation and maintenance.The consequence of such perturbations is resulted in the alteration of bile secretion,gluconeogenesis,glycolysis,detoxification and metabolism of carbohydrates,proteins,fat and balance of nutrients.The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
文摘Chronic active hepatitis(CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma.The histological end points of CAH are chronic inflammation,fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers.The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis,inflammation and cytokine production and liver scaring(fibrosis).The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components.The viral and cellular factors that contribute to liver injury are discussed in this article.Liver injury caused by the viral infection affects many cellular processes such as cell signaling,apoptosis,transcription,DNA repair which in turn induce radical effects on cell survival,growth,transformation and maintenance.The consequence of such perturbations is resulted in the alteration of bile secretion,gluconeogenesis,glycolysis,detoxification and metabolism of carbohydrates,proteins,fat and balance of nutrients.The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury.