This article establishes several new geometric inequalities, which refer to the lengthes of the edges of a simplex and interior point, height, lateral area, and the circumradius of another simplex.
A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal proble...A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.展开更多
Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the ef...Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.展开更多
An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let h(κ) be the smallest integer such that every set of points...An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let h(κ) be the smallest integer such that every set of points in the plane, no three collinear, with at least h(κ) interior points, has a subset of points with exactly κ or κ + 1 interior points of P. We prove that h(5)=11.展开更多
In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local ...In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.展开更多
In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence o...In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.展开更多
The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and ...The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.展开更多
The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point wit...The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.展开更多
Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation ...Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicit...Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.展开更多
In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condi...In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.展开更多
We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelob...We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL.展开更多
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel fun...In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.展开更多
Coordinated charging of electric vehicles(EVs)is critical to provide safe and cost effective operation of distribution systems where household single phase charging of EV could contribute to imbalance of the distribut...Coordinated charging of electric vehicles(EVs)is critical to provide safe and cost effective operation of distribution systems where household single phase charging of EV could contribute to imbalance of the distribution system.To date,reported researches on optimization methods for coordinated charging aiming at minimizing power losses have the disadvantages of low calculation efficiency when applied to large systems or have not taken the voltage constraints into account.The phase component and polar coordinates power flow equations of an unbalanced distribution system are derived.Primal dual interior point dynamic programming is introduced for coordinated charging of EVs to minimize distribution system losses where charging demand,voltage and current constraints have been taken into account.The proposed optimization is evaluated using an actual 423-bus case as the test system.Results are promisingwith the proposed method having good convergence under time-efficient calculations while providing optimization of power losses,lower load variance,and improvement of voltage profile versus uncoordinated scenarios.展开更多
In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions....In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions.We prove that the interior-point algorithm based on the new kernel function meets O(n3/4 logε/n)iterations as the worst case complexity bound for the large-update method.This coincides with the complexity bound obtained by the first kernel function with a trigonometric barrier term proposed by El Ghami et al.in2012,and improves with a factor n(1/4)the obtained iteration bound based on the classic kernel function.We present some numerical simulations which show the effectiveness of the algorithm developed in this paper.展开更多
In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These ...In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.展开更多
基金Supported by the General Project of Education Department of Hunan Province(09C470)
文摘This article establishes several new geometric inequalities, which refer to the lengthes of the edges of a simplex and interior point, height, lateral area, and the circumradius of another simplex.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.
文摘Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.
基金Supported by the National Natural Science Foundation of China(10901045,11171088)Supported by the NSF of Hebei Province(A2010000828)Supported by the SF of Hebei University of Science and Technology(QD200955)
文摘An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let h(κ) be the smallest integer such that every set of points in the plane, no three collinear, with at least h(κ) interior points, has a subset of points with exactly κ or κ + 1 interior points of P. We prove that h(5)=11.
文摘In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.
基金Supported by the NNSF of China(11026079)Supported by the Youth Backbone Teacher Foundation of Henan Province(173)
文摘In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.
基金The NNSF (10071031) of China and National 973 Project.
文摘The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.
文摘The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.
文摘Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
文摘Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671010, 70841008)
文摘In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.
基金supported by the Ministry of Higher Education(MOHE)the Research Management Centre(RMC)+2 种基金the School of Postgraduate Studies(SPS)the Communication Engineering Department,the Faculty of Electrical Engineering(FKE)Universiti T¨ekùnolóogi Malaysia(UTM)Johor Bahru(Nos.12H09 and 03E20tan)
文摘We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL.
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
文摘In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.
基金supported by the National Natural Science Fundation of China(No.51577046,No.5160070415)the National Defense Advanced Research Project(No.C1120110004,No.9140A27020211DZ5102)+1 种基金the Key Grant Project of Chinese Ministry of Education(No.313018)Anhui Provincial Science and Technology Foundation of China(No.1301022036)
文摘Coordinated charging of electric vehicles(EVs)is critical to provide safe and cost effective operation of distribution systems where household single phase charging of EV could contribute to imbalance of the distribution system.To date,reported researches on optimization methods for coordinated charging aiming at minimizing power losses have the disadvantages of low calculation efficiency when applied to large systems or have not taken the voltage constraints into account.The phase component and polar coordinates power flow equations of an unbalanced distribution system are derived.Primal dual interior point dynamic programming is introduced for coordinated charging of EVs to minimize distribution system losses where charging demand,voltage and current constraints have been taken into account.The proposed optimization is evaluated using an actual 423-bus case as the test system.Results are promisingwith the proposed method having good convergence under time-efficient calculations while providing optimization of power losses,lower load variance,and improvement of voltage profile versus uncoordinated scenarios.
文摘In this paper,we introduce for the first time a new eligible kernel function with a hyperbolic barrier term for semidefinite programming(SDP).This add a new type of functions to the class of eligible kernel functions.We prove that the interior-point algorithm based on the new kernel function meets O(n3/4 logε/n)iterations as the worst case complexity bound for the large-update method.This coincides with the complexity bound obtained by the first kernel function with a trigonometric barrier term proposed by El Ghami et al.in2012,and improves with a factor n(1/4)the obtained iteration bound based on the classic kernel function.We present some numerical simulations which show the effectiveness of the algorithm developed in this paper.
基金the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.