In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the ef...Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.展开更多
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists...This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.展开更多
In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence o...In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.展开更多
The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and ...The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.展开更多
Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicit...Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.展开更多
On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear pro...On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.展开更多
The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point wit...The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.展开更多
Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation ...Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.展开更多
Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interio...Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interior-point methods are used to minimize costs and losses in the generation and transmission of the predispatch active power flow in a hydroelectric system with previously scheduled line manipulations for preventative maintenance, over a period of twenty-four hours. The matrix structure of this problem and the modification that it imposes on the system is also broached in this study. From the computational standpoint, the effort required to solve a problem with or without line manipulations is similar, and the reasons for this are also discussed in this study. Computational results sustain our findings.展开更多
In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These ...In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.展开更多
A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal proble...A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functio...In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
In this paper, an unbounded condition is presented, under which we are able to utilize the interior point homotopy method to solve the Brouwer fixed point problem on unbounded sets. Two numerical examples in R3 are pr...In this paper, an unbounded condition is presented, under which we are able to utilize the interior point homotopy method to solve the Brouwer fixed point problem on unbounded sets. Two numerical examples in R3 are presented to illustrate the results in this paper.展开更多
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee...The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.展开更多
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
文摘Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.
基金Supported by the National Natural Science Fund Finances Projects(71071119)
文摘This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.
基金Supported by the NNSF of China(11026079)Supported by the Youth Backbone Teacher Foundation of Henan Province(173)
文摘In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.
基金The NNSF (10071031) of China and National 973 Project.
文摘The finite-dimensional variational inequality problem (VIP) has been studied extensively in the literature because of its successful applications in many fields such as economics, transportation, regional science and operations research. Barker and Pang[1] have given an excellent survey of theories, methods and applications of VIPs.
文摘Optimal adjustment algorithm for p coordinates is a generalization of the optimal pair adjustment algorithm for linear programming, which in turn is based on von Neumann’s algorithm. Its main advantages are simplicity and quick progress in the early iterations. In this work, to accelerate the convergence of the interior point method, few iterations of this generalized algorithm are applied to the Mehrotra’s heuristic, which determines the starting point for the interior point method in the PCx software. Computational experiments in a set of linear programming problems have shown that this approach reduces the total number of iterations and the running time for many of them, including large-scale ones.
文摘On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.
文摘The generation expansion planning is one of complex mixed-integer optimization problems, which involves a large number of continuous or discrete decision variables and constraints. In this paper, an interior point with cutting plane (IP/CP) method is proposed to solve the mixed-integer optimization problem of the electrical power generation expansion planning. The IP/CP method could improve the overall efficiency of the solution and reduce the computational time. Proposed method is combined with the Bender's decomposition technique in order to decompose the generation expansion problem into a master investment problem and a slave operational problem. The numerical example is presented to compare with the effectiveness of the proposed algorithm.
文摘Low-order wavefront error account for a large proportion of wave aberrations.A compensation method for low order aberration of projection lithography objective based on Interior Point Method is presented.Compensation model between wavefront error and degree of movable lens freedom is established.Converting over-determined system to underdetermined system,the compensation is solved by Interior Point Method(IPM).The presented method is compared with direct solve the over-determined system.Then,other algorithm GA,EA and PS is compared with IPM.Simulation and experimental results show that the presented compensation method can obtained compensation with less residuals compared with direct solve the over-determined system.Also,the presented compensation method can reduce computation time and obtain results with less residuals compare with AGA,EA and PS.Moreover,after compensation,RMS of wavefront error of the experimental lithography projection objective decrease from 56.05 nm to 17.88 nm.
文摘Transmission line manipulations in a power system are necessary for the execution of preventative or corrective main- tenance in a network, thus ensuring the stability of the system. In this study, primal-dual interior-point methods are used to minimize costs and losses in the generation and transmission of the predispatch active power flow in a hydroelectric system with previously scheduled line manipulations for preventative maintenance, over a period of twenty-four hours. The matrix structure of this problem and the modification that it imposes on the system is also broached in this study. From the computational standpoint, the effort required to solve a problem with or without line manipulations is similar, and the reasons for this are also discussed in this study. Computational results sustain our findings.
基金the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant Nos.J50101, S30104)
文摘A penalized interior point approach for constrained nonlinear programming is examined in this work. To overcome the difficulty of initialization for the interior point method, a problem equivalent to the primal problem via incorporating an auxiliary variable is constructed. A combined approach of logarithm barrier and quadratic penalty function is proposed to solve the problem. Based on Newton's method, the global convergence of interior point and line search algorithm is proven. Only a finite number of iterations is required to reach an approximate optimal solution. Numerical tests are given to show the effectiveness of the method.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
基金Project supported by Dutch Organization for Scientific Research(Grant No .613 .000 .010)
文摘In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
文摘In this paper, an unbounded condition is presented, under which we are able to utilize the interior point homotopy method to solve the Brouwer fixed point problem on unbounded sets. Two numerical examples in R3 are presented to illustrate the results in this paper.
文摘The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.