In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These ...In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.展开更多
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-p...In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the ef...Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.展开更多
The service quality of a workstation depends mainly on its service load, ifnot taking into account all kinds of devices' break-downs. In this article, an optimization modelwith inequality constraints is proposed, ...The service quality of a workstation depends mainly on its service load, ifnot taking into account all kinds of devices' break-downs. In this article, an optimization modelwith inequality constraints is proposed, which aims to minimize the service load. A noveltransformation of optimization variables is also devised and the constraints are properly combinedso as to make this model into a convex one, whose corresponding Lagrange function and the KKTconditions are established afterwards. The interior-point method for convex optimization ispresented here as an efficient computation tool. Finally, this model is evaluated by a real example,from which conclusions are reached that the interior-point method possesses advantages such asfaster convergeoce and fewer iterations and it is possible to make complicated nonlinearoptimization problems exhibit convexity so as to obtain the optimum.展开更多
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off betwee...The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.展开更多
In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. Th...In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.展开更多
The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex opt...The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.展开更多
In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular functi...In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.展开更多
In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe...In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.展开更多
A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and qu...A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.展开更多
In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel fun...In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.展开更多
This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear opti...This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear optimization system is proposed to adjust the PID controller leading the output signal to stable operation condition with minimum oscillations. The constraint set used in the optimization process is defined by using numerical integration approach. The generated optimization problem is convex and easily solved using an interior point algorithm. Results obtained using familiar plants from literature have shown that the proposed linear programming problem is very effective for tuning PID controllers.展开更多
Linearly constrained separable convex minimization problems have been raised widely in many real-world applications.In this paper,we propose a homotopy-based alternating direction method of multipliers for solving thi...Linearly constrained separable convex minimization problems have been raised widely in many real-world applications.In this paper,we propose a homotopy-based alternating direction method of multipliers for solving this kind of problems.The proposed method owns some advantages of the classical proximal alternating direction method of multipliers and homotopy method.Under some suitable condi-tions,we prove global convergence and the worst-case O(k/1)convergence rate in a nonergodic sense.Preliminary numerical results indicate effectiveness and efficiency of the proposed method compared with some state-of-the-art methods.展开更多
This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set ...This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set of linear equations and complementarity slackness conditions. An unboundedness challenge arises in the proposed formulation and this challenge is alleviated by construction of an additional constraint. The formulated linear programming problem can be solved efficiently by the available simplex or interior point algorithms. There is no restricted base entry in this new formulation. Some computational experiments were carried out and results are provided.展开更多
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr...In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.展开更多
基金the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
基金Shahrekord University for financial supportpartially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran
文摘In this paper, a corrector-predictor interior-point algorithm is proposed for sym- metric optimization. The algorithm approximates the central path by an ellipse, follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iter- ates in a wide neighborhood of the central-path. Using the machinery of Euclidean Jordan algebra and the commutative class of search directions, the convergence analysis of the algo- rithm is shown and it is proved that the algorithm has the complexity bound O (√τL) for the well-known Nesterov-Todd search direction and O (τL) for the xs and sx search directions.
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
文摘Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.
文摘The service quality of a workstation depends mainly on its service load, ifnot taking into account all kinds of devices' break-downs. In this article, an optimization modelwith inequality constraints is proposed, which aims to minimize the service load. A noveltransformation of optimization variables is also devised and the constraints are properly combinedso as to make this model into a convex one, whose corresponding Lagrange function and the KKTconditions are established afterwards. The interior-point method for convex optimization ispresented here as an efficient computation tool. Finally, this model is evaluated by a real example,from which conclusions are reached that the interior-point method possesses advantages such asfaster convergeoce and fewer iterations and it is possible to make complicated nonlinearoptimization problems exhibit convexity so as to obtain the optimum.
文摘The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interiorpoint method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.
文摘In this paper, an Improved Affine-Scaling Interior Point Algorithm for Linear Programming has been proposed. Computational results of selected practical problems affirming the proposed algorithm have been provided. The proposed algorithm is accurate, faster and therefore reduces the number of iterations required to obtain an optimal solution of a given Linear Programming problem as compared to the already existing Affine-Scaling Interior Point Algorithm. The algorithm can be very useful for development of faster software packages for solving linear programming problems using the interior-point methods.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant No.S30101)the Research Foundation for the Doctoral Program of Higher Education (Grant No.200802800010)
文摘The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.
基金Supported by Natural Science Foundation of Hubei Province of China (Grant No. 2008CDZ047)
文摘In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDZD47)
文摘In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.
文摘A class of polynomial primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function, with parameters p and q, is presented. Its growth term is between linear and quadratic. Some new tools for the analysis of the algorithms are proposed. The complexity bounds of O(√Nlog N log N/ε) for large-update methods and O(√Nlog N/ε) for smallupdate methods match the best known complexity bounds obtained for these methods. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p and q.
文摘In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.
文摘This work presents a new methodology based on Linear Programming (LP) to tune Proportional-Integral-Derivative (PID) control parameters. From a specification of a desired output time domain of the plant, a linear optimization system is proposed to adjust the PID controller leading the output signal to stable operation condition with minimum oscillations. The constraint set used in the optimization process is defined by using numerical integration approach. The generated optimization problem is convex and easily solved using an interior point algorithm. Results obtained using familiar plants from literature have shown that the proposed linear programming problem is very effective for tuning PID controllers.
基金the National Natural Science Foundation of China(Nos.11571074 and 61672005)the Natural Science Foundation of Fujian Province(No.2015J01010).
文摘Linearly constrained separable convex minimization problems have been raised widely in many real-world applications.In this paper,we propose a homotopy-based alternating direction method of multipliers for solving this kind of problems.The proposed method owns some advantages of the classical proximal alternating direction method of multipliers and homotopy method.Under some suitable condi-tions,we prove global convergence and the worst-case O(k/1)convergence rate in a nonergodic sense.Preliminary numerical results indicate effectiveness and efficiency of the proposed method compared with some state-of-the-art methods.
文摘This paper presents a new heuristic to linearise the convex quadratic programming problem. The usual Karush-Kuhn-Tucker conditions are used but in this case a linear objective function is also formulated from the set of linear equations and complementarity slackness conditions. An unboundedness challenge arises in the proposed formulation and this challenge is alleviated by construction of an additional constraint. The formulated linear programming problem can be solved efficiently by the available simplex or interior point algorithms. There is no restricted base entry in this new formulation. Some computational experiments were carried out and results are provided.
基金Supported by the Natural Science Foundation of Hubei Province (2008CDZD47)
文摘In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.