期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving interlaminar fracture toughness of flax fiber/epoxy composites with chopped flax yarn interleaving 被引量:7
1
作者 LI Yan WANG Di MA Hao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1745-1752,共8页
In this research, unidirectional flax fabrics reinforced epoxy laminates were intedeaved with randomly oriented chopped flax yarns at various yarn lengths and contents. Mode I interlaminar fracture toughness of the la... In this research, unidirectional flax fabrics reinforced epoxy laminates were intedeaved with randomly oriented chopped flax yarns at various yarn lengths and contents. Mode I interlaminar fracture toughness of the laminates was evaluated via Double Cantilever Beam (DCB) tests. The results showed that Mode I interlaminar fracture toughness increased with the introduction of the chopped yarns. With moderate yarn length and content, the best toughening effect (31% improvement in Mode I inter- laminar fracture toughness) was achieved. It was observed with the aid of Scanning Electronic Microscopy (SEM) that the in- troduction of the chopped yarns resulted in more tortuous in-plane crack propagation paths as well as the "trans-layer" phe- nomenon and fiber bridging effect of both the unidirectional yams and the chopped yams. These hindered the growth of the crack and led to more energy dissipation during delamination progress. Excessive yam length or content would induce unstable crack propagation and thus weakened the toughening improvement. No remarkable change was found in the tensile properties and the Charpy impact strength for the interleaved laminates, which indicated that this interleaving method was effective on interlaminar toughening without sacrificing the comprehensive mechanical properties of the laminates. 展开更多
关键词 natural fiber reinforced composites interlaminar fracture toughness interlaminar toughening INTERLEAVING fiberbridging trans-layer effect
原文传递
Synergetic Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites Interleaved with PES/PEK‑C Hybrid Nanofiber Veils 被引量:5
2
作者 Jinli Zhou Chenyu Zhang +5 位作者 Chao Cheng Ming Wang Zhihui Yang Yanfei Yang Hongying Yang Muhuo Yu 《Advanced Fiber Materials》 SCIE EI 2022年第5期1081-1093,共13页
In this study,two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body.The cast was then manufactured into hybrid nanofiber as interleaves for inte... In this study,two types of soluble thermoplastic resins were added to epoxy resin at a fixed weight ratio to prepare a three-phase cast body.The cast was then manufactured into hybrid nanofiber as interleaves for interlaminar toughening of carbon fiber/epoxy resin(CF/EP)composites using a co-solvent method.The results revealed that when the hybrid components reached 15 wt%,Polyethersulfone(PES)and polyaryletherketone cardo(PEK-C)exhibited the best synergistic toughening effect,and the fracture toughness increased by 99.8%and 39.8%,respectively,compared with the reference or the same proportion of the single PES toughened sample.We used PES/PEK-C hybrid nanofibers with an areal density of 19.2 g per square meter(gsm)as composite toughening layers.Apart from the lack of significant influence of PES nanofiber on CF/EP composites,the interlaminar fracture toughness of mode I and mode II layers increased by 88.3%and 46.9%,respectively,compared to the reference sample.Scanning Electron Microscopy of the fracture surface and cross-section micromorphology of the laminate displayed that the thermoplastic microspheres of different sizes contribute differently to crack resistance:PEK-C consumes more energy due to the debonding and extraction of microspheres and resin,whereas the presence of the PES phase can induce more plastic deformation and crack deflection. 展开更多
关键词 Carbon fiber/epoxy resin POLYETHERSULFONE Polyaryletherketone cardo interlaminar fracture toughness NANOFIBER
原文传递
Phase separation morphology and mode II interlaminar fracture toughness of bismaleimide laminates toughened by thermoplastics with triphenylphosphine oxide group 被引量:3
3
作者 SUN ShuJun GUO MiaoCai +1 位作者 YI XiaoSu ZHANG ZuoGuang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第3期444-451,共8页
Toughness improvement of bismaleimide(BMI)resin is very important for its application in composite materials.Blending with
关键词 THERMOPLASTIC phase separation BLENDS triphenylphosphine oxide BISMALEIMIDE ex-situ toughening interlaminar fracture toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部