期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage 被引量:6
1
作者 Junbiao Wu Yu Wang +6 位作者 Yaopeng Zhang Hao Meng Yan Xu Yide Han Zhuopeng Wang Yanfeng Dong Xia Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期203-209,I0007,共8页
MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk o... MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid solutions.In this work,we developed a water-free ionothermal synthesis of 2D Ti3C2 MXene via etching pristine Ti3AlC2 MAX in low-cost choline chloride and oxalic acid based deep eutectic solvents(DES)with the presence of NH4F,thus it was highly safe and convenient to operate solid precursor and product materials at room temperature.Benefited from the low vapor pressure and solvating properties of DES,the prepared Ti3C2(denoted as DES-Ti3C2)possessed a high purity up to 98% compared with 95% for HF etched Ti3C2(denoted as HF-Ti3C2).Notably,an expanded interlayer spacing of 1.35 nm could be achieved due to the intercalation of choline cations in DES-Ti3C2,larger than that of HF-Ti3C2(0.98 nm).As a result,the DES-Ti3C2 anodes exhibited enhanced lithium storage performance,such as high reversible capacity of 208 m Ah g-1at 0.5 A g-1,and long cycle life over 400 times,outperforming most reported pure MXene anodes.The ionothermal synthesis of MXene developed here may pave a new way to safely prepare other MXene for various energy relating applications. 展开更多
关键词 Ionothermal synthesis Deep eutectic solvents MXene Expanded interlayer spacing Lithium ion batteries
下载PDF
Effects of Solvent Molecules on the Interlayer Spacing of Graphene Oxide 被引量:3
2
作者 Liyan Liu Ruifeng Zhang +4 位作者 Ying Liu Haonan Zhu Wei Tan Guorui Zhu Yang Wang 《Transactions of Tianjin University》 EI CAS 2018年第6期555-562,共8页
Graphene oxide (GO) contains numerous functional groups that facilitate the intercalation of polar solvents. The properties and applications of GO are closely related to its interlayer spacing. We report on the chan... Graphene oxide (GO) contains numerous functional groups that facilitate the intercalation of polar solvents. The properties and applications of GO are closely related to its interlayer spacing. We report on the changes in the interlayer spacing of GO after the adsorption of water molecules and the polar organic solvents C2H602 (EG), C3HTNO (DMF), C5H9NO (NMP). Experiments were conducted to investigate the variations in the functional groups and structure of GO after solvent adsorp-tion, and they play a vital role in modeling and verifying the results of molecular dynamics simulation. The most stable GO structures are obtained through molecular dynamics simulation. The expansion of the interlayer spacing of GO after the adsorption of monolayer solvent molecules corresponds to the minimum three-dimensional size of the solvent molecules. The spatial arrangement of solvent molecules also contributes to the changes in interlayer spacing. Most adsorbed molecules are oriented parallel to the carbon plane of GO. However, as additional molecules are adsorbed into the interlaminations of GO, the adsorbed molecules are oriented perpendicular to the carbon plane of GO, and a large space forms between two GO interlayers. In addition, the role of large molecules in increasing interlayer spacing becomes more crucial than that of water molecules in the adsorption of binary solvent systems by GO. 展开更多
关键词 Graphene oxide interlayer spacing Solvent adsorption
下载PDF
Self-assembled MoS_(2)/C nanoflowers with expanded interlayer spacing as a high-performance anode for sodium ion batteries
3
作者 Yuxiang Luo Pei Zhang +1 位作者 Xunhui Xiong Haikuo Fu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期240-246,共7页
Two-dimensional(2D)MoS_(2) nanomaterials have been extensively studied due to their special structure and high theoretical capacity,but it is still a huge challenge to improve its cycle stability and achieve superior ... Two-dimensional(2D)MoS_(2) nanomaterials have been extensively studied due to their special structure and high theoretical capacity,but it is still a huge challenge to improve its cycle stability and achieve superior fast charge and discharge performance.Herein,a facile one-step hydrothermal method is proposed to synthetize an ordered and self-assembled MoS_(2) nanoflower(MoS_(2)/C NF)with expanded interlayer spacing via embedding a carbon layer into the interlayer.The carbon layer in the MoS_(2) interlayer can speed the transfer of electrons,while the nanoflower structure promotes the ions transport and improves the structural stability during the charging/discharging process.Therefore,MoS_(2)/C NF electrode exhibits exceptional rate performance(318.2 and 302.3 mA·h·g^(-1) at 5.0 and 10.0 A·g^(-1),respectively)and extraordinary cycle durability(98.8%retention after 300 cycles at a current density of 1.0 A·g^(-1)).This work provides a simple and feasible method for constructing high-performance anode composites for sodium ion batteries with excellent cycle durability and fast charge/discharge ability. 展开更多
关键词 Sodium ion batteries Nanoflower structure Expanded interlayer spacing MoS_(2)nanosheets
下载PDF
Boosting the electrochromic properties by large V_(2)O_(5)nanobelts interlayer spacing tuned via PEDOT
4
作者 Haohao Sun Wenxuan Wang +2 位作者 Yuli Xiong Zelang Jian Wen Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期408-413,共6页
Vanadium pentoxide(V_(2)O_(5))with a layered structure is of great interest in the field of electrochromic(EC)due to its abundance of color variations.However,there are still a series of problems such as slow ion diff... Vanadium pentoxide(V_(2)O_(5))with a layered structure is of great interest in the field of electrochromic(EC)due to its abundance of color variations.However,there are still a series of problems such as slow ion diffusion,poor electronic conductivity and cyclic stability in the reaction process.Herein,we successfully prepared a stable and fast multi-color electrochromic material V_(2)O_(5)-PEDOT by a simple“one-pot”method.The layer space of V_(2)O_(5)could be tuned by 3,4-ethylenedioxythiophene(named V_(2)O_(5)-PEDOT)during the dissolution and recrystallization of vanadium oxide.The expanded layer spacing facilitates rapid ion insertion and extraction.PEDOT serves as an internal conductive pillar to improve the overall conductivity of the material.The obtained intercrossing structure of the nanobelts shortens the ion diffusion distance and ensures electrolyte penetration.The V_(2)O_(5)-PEDOT exhibits the fast response time(1.1 s for coloration and 3.5 s for bleaching at 422 nm),high optical contrast(ΔT=45%at 422 nm andΔT=35.2%at 1000 nm),great coloration efficiency(CE=97.1 cm2/C),and high cyclic stability(86%preserved after 3000 cycles).The electrochromic devices(ECD)were successfully assembled by using V_(2)O_(5)-PEDOT films as ion storage layers and electrochromic layers,demonstrating remarkable performance. 展开更多
关键词 Vanadium oxide PEDOT NANOBELTS interlayer spacing Electrochromic
原文传递
Enhanced sodium storage performance in flexible free- standing multichannel carbon nanofibers with enlarged interlayer spacing 被引量:1
5
作者 Beibei Yuan Linchao Zeng +2 位作者 Xizhen Sun Yan Yu Qingsong Wang 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2256-2264,共9页
A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (M... A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (MCNFs-V) had a dilated interlayer spacing of graphene sheets (0.398 nm) and an ultra-low specific surface area (15.3 m2/g). When used as an anode for sodium-ion batteries, the MCNFs-V showed a discharge plateau below 0.1 V, and sodium was intercalated into the stacked graphene sheets layers during the sodiation process. The MCNFs-V exhibited a reversible and high specific capacity of 222 mAh/g at a current density of 0.1 A/g after 100 cycles and excellent long-term cycling stability, which was superior to that of MCNFs. The improved sodium storage performance was attributed to the unique microstructure of the MCNFs-V with an enlarged interlayer spacing of graphene sheets for sodium intercalation. The MCNFs-V electrode holds great promise as an anode material for commercial sodium-ion batteries. 展开更多
关键词 sodium-ion batteries NANOFIBERS interlayer spacing FLEXIBLE
原文传递
Ion sieving in graphene oxide membranes via cationic control of interlayer spacing 被引量:1
6
《Science Foundation in China》 CAS 2017年第4期13-,共1页
With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Fang Haiping(方海平)from Shanghai Institute of Applied Physics,Chinese Academy of Sciences,... With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Fang Haiping(方海平)from Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Prof.Wu Minghong(吴明红)from Shanghai Applied Radiation Institute。 展开更多
关键词 Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
原文传递
Ultrasound-induced elevation of interlayer spacing and conductivity of CoNi hydroxides for high-performance Ni–Zn batteries
7
作者 Hongxuan Tang Jiujiu Ge +7 位作者 Lanze Li Xinqiang Zhu Sai Wu Fan Wang Yajun Pang Zhehong Shen Cao Guan Hao Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期294-297,共4页
Nickel–zinc(Ni–Zn) batteries hold a lot of promise for energy storage thanks to their high output voltage, plentiful Zn supply, and low toxicity. Achieving the facile preparation of high-performance cathodes at ambi... Nickel–zinc(Ni–Zn) batteries hold a lot of promise for energy storage thanks to their high output voltage, plentiful Zn supply, and low toxicity. Achieving the facile preparation of high-performance cathodes at ambient temperature remains a challenge, it is however essential for practical applications. Here, in the present study, an efficient ultrasound-assisted one-step fabrication of CoNi double hydroxide(UACoNi DH) microspheres at room temperature that performs well as a cathode for Ni–Zn batteries was proposed. This designed ultrasound-assisted method induces the formation of metal double hydroxide with an elevation of interlayer spacing and bulk conductivity while maintaining the structure features of CoNi DH prepared without ultrasound assistance. As a result, the UA-CoNi DH as an electrode material displays highly enhanced electrochemical properties relative to CoNi DH prepared without ultrasound assistance. Benefitting from the improved performance of our UA-CoNi DH electrode, the Ni–Zn battery with UA-CoNi DH as the cathode(UA-CoNi DH//Zn) delivers a good specific capacity(202.36 mAh/g) and rate performance(70.49% capacity maintained at a 10-fold higher current), presenting more than 71.61%and 21.99% improvement relative to the CoNi DH//Zn battery, respectively. This work offers guidelines for constructing high-performance Ni–Zn battery cathodes in an open environment. 展开更多
关键词 Ni–Zn batteries Cathodes Metal hydroxide interlayer spacing Ultrasound-assisted method Room temperature
原文传递
Preparation of alumina-pillared layered tetratitanates with different interlayer spacings
8
作者 HOU, Wen-Hua YAN, Qi-Jie PENG, Bing-Cheng FU, Xian-Cai Department of Chemistry, Nanjing University, Nanjing, Jiangsu 210008, China 《Chinese Journal of Chemistry》 SCIE CAS CSCD 1994年第6期557-561,共5页
The synthesis of pillared clays have led to the development of new materialswith suitable pore size and sufficient stability to be used as shape-selective catalystsand molecular sieves. There are numerous layered inor... The synthesis of pillared clays have led to the development of new materialswith suitable pore size and sufficient stability to be used as shape-selective catalystsand molecular sieves. There are numerous layered inorganic oxides which havethe potential to undergo ion-exchange reactions analogous to those observed withclays, but the nonswelling nature of most ionic layered oxides generally prevents 展开更多
关键词 Layered tetratitanate ALUMINA PILLARING interlayer spacing.
原文传递
Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range 被引量:1
9
作者 Gaofeng Wang Lingxian Meng +3 位作者 Xinyi Ji Xuying Liu Jiajie Liang Shuiren Liu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期463-475,共13页
As the main component of wearable electronic equipment,flexible pressure sensors have attracted wide attention due to their excellent sensitivity and their promise with respect to applications in health monitoring,ele... As the main component of wearable electronic equipment,flexible pressure sensors have attracted wide attention due to their excellent sensitivity and their promise with respect to applications in health monitoring,electronic skin,and human-computer interactions.However,it remains a significant challenge to achieve epidermal sensing over a wide sensing range,with short response/recovery time and featuring seamless conformability to the skin simultaneously.This is critical since the capture of minute electrophysiological signals is important for health care applications.In this paper,we report the preparation of a nacre-like MXene/sodium carboxymethyl cellulose(CMC)nanocomposite film with a“brick-and-mortar”interior structure using a vacuum-induced self-assembly strategy.The synergistic behavior of the MXene“brick”and flexible CMC“mortar”contributes to attenuating interlamellar self-stacking and creates numerous variable conductive pathways on the sensing film.This resulted in a high sensitivity over a broad pressure range(i.e.,0.03-22.37 kPa:162.13 kPa^(-1);22.37-135.71 kPa:127.88 kPa^(-1);135.71-286.49 kPa:100.58 kPa^(-1)).This sensor also has a low detection limit(0.85 Pa),short response/recovery time(8.58 ms/34.34 ms),and good stability(2000 cycles).Furthermore,we deployed pressure sensors to distinguish among tiny particles,various physiological signals of the human body,space arrays,robot motion monitoring,and other related applications to demonstrate their feasibility for a variety of health and motion monitoring use cases. 展开更多
关键词 Flexible pressure sensor MXene BIOINSPIRED Physiological signals interlayer spacing
下载PDF
Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries 被引量:5
10
作者 Linpo Li Shuailei Liu +7 位作者 Wencong Liu Deliang Ba Wenyi Liu Qiuyue Gui Yao Chen Zuoqi Hu Yuanyuan Li Jinping Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期232-245,共14页
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is ... Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries(AZIBs)due to their large capacities,good rate performance and facile synthesis in large scale.However,their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes.Herein,taking a new potassium vanadate K0.486V2O5(KVO)cathode with large interlayer spacing(~0.95 nm)and high capacity as an example,we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte,but with no need to approach“water-in-salt”threshold.With the optimized moderate concentration of 15 m ZnCl2 electrolyte,the KVO exhibits the best cycling stability with ~95.02% capacity retention after 1400 cycles.We further design a novel sodium carboxymethyl cellulose(CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm^-1 for the first time and assemble a quasi-solid-state AZIB.This device is bendable with remarkable energy density(268.2 Wh kg^−1),excellent stability(97.35% after 2800 cycles),low self-discharge rate,and good environmental(temperature,pressure)suitability,and is capable of powering small electronics.The device also exhibits good electrochemical performance with high KVO mass loading(5 and 10 mg cm^-2).Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials. 展开更多
关键词 Electrolyte concentration regulation Quasi-solid-state Zn ion battery K0.486V2O5 Large interlayer spacing Cycling stability
下载PDF
Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery 被引量:5
11
作者 Quan Zong Wei Du +6 位作者 Chaofeng Liu Hui Yang Qilong Zhang Zheng Zhou Muhammad Atif Mohamad Alsalhi Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期13-27,共15页
Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage du... Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation.In this work,partial NH^(+)_(4) ions were pre-removed from NH_(4)V_(4)O_(10) through heat treatment;NH_(4)V_(4)O_(10) nanosheets were directly grown on carbon cloth through hydrothermal method.Defi-cient NH_(4)V_(4)O_(10)(denoted as NVO),with enlarged interlayer spacing,facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure.The NVO nanosheets delivered a high specific capac-ity of 457 mAh g^(−1) at a current density of 100 mA g^(−1) and a capacity retention of 81%over 1000 cycles at 2 A g^(−1).The initial Coulombic efficiency of NVO could reach up to 97%compared to 85%of NH_(4)V_(4)O_(10) and maintain almost 100%during cycling,indicating the high reaction reversibility in NVO electrode. 展开更多
关键词 Deficient ammonium vanadate Large interlayer spacing Reversible redox reaction Electrochemical mechanism
下载PDF
Evaluation of Molecular Structural Effects on Needle Coke Mesophase Stacking 被引量:3
12
作者 Yang Haiyang Wang Chunlu +3 位作者 Zhou Han Wang Lixin Ren Qiang Fan Qiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期94-100,共7页
Molecular simulations were performed to investigate the molecular structural effects on needle coke mesophase stacking.The simulation results showed that the stacking states of anthracene trimer and tetramer accumulat... Molecular simulations were performed to investigate the molecular structural effects on needle coke mesophase stacking.The simulation results showed that the stacking states of anthracene trimer and tetramer accumulations were orderly,while the stacking states of anthracene dimer,pentamer,and hexamer accumulations were disorderly.Anthracene trimer and tetramer in the model compounds were two of the most ideal needle coke mesophase constituents.It was also found that the introduction of methyl side chains in anthracene trimer derivatives was not conducive to the formation of a mesophase crystal.To sum up,the molecules which had similar structures to anthracene trimer or tetramer with no alkyl chains are ideal constituents of needle coke mesophase. 展开更多
关键词 molecular simulation needle coke MESOPHASE STACKING interlayer spacing
下载PDF
Boosting of reversible capacity delivered at a low voltage below 0.5 V in mildly expanded graphitized needle coke anode for a high-energy lithium ion battery 被引量:2
13
作者 Dong Sun Lu Zhao +10 位作者 Zhihua Xiao Kai Zhao Rundan Lin Hongmei Song Xilu Zhang Xinlong Ma Chong Peng Xiaoqiao Huang Xingxun Li Jinsen Gao Chunming Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期100-110,I0004,共12页
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially... The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs. 展开更多
关键词 Graphited needle coke Mildly expanded interlayer spacing Low voltage platform Lithium ion battery
下载PDF
Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage 被引量:2
14
作者 Junzhi Li Junming Cao +6 位作者 Xifei Li Junhua Hu Yaohui Zhang Hirbod Maleki Kheimeh Sari Chunxiao Lv IgorVZatovsky Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期420-427,共8页
The carbon materials as anode electrodes have been widely studied for potassium ion batteries(PIBs).However,the large size of potassium ions prevents their intercalation/deintercalation,resulting in poor storage behav... The carbon materials as anode electrodes have been widely studied for potassium ion batteries(PIBs).However,the large size of potassium ions prevents their intercalation/deintercalation,resulting in poor storage behaviors.Herein,a novel design of N/S codoped hierarchical carbonaceous fibers(NSHCF)formed from nanosheets self-assembled by catalyzing Aspergillus niger with Sn is reported.The asprepared NSHCF at 600℃(NSHCF-600)exhibits a high reversible capacity of 345.4 m Ah g^(-1) at 0.1 A g^(-1) after 100 cycles and an excellent rate performance of 124.5 m Ah g^(-1) at 2 A g^(-1).The excellent potassium storage performance can be ascribed to the N/S dual-doping,which enlarges interlayer spacing(0.404 nm)and introduces more defects.The larger interlayer spacing and higher pyridinic N active sites can promote K ions diffusion and storage.In addition,the ex situ transmission electron microscopy reveals the high reversibility of potassiation/depotassiation process and structural stability. 展开更多
关键词 Carbonaceous fibers Large interlayer spacing Nitrogen/sulphur dual-doping Potassium-ion batteries
下载PDF
Highly efficient separation of Sc^(3+) and Y^(3+) in acid solution by a graphene oxide membrane with interlayer sieving
15
作者 Huixiong Jiang Jin-Hang Liu +3 位作者 Xiudong Chen Xiaohua Cao Xiushen Ye Guosheng Shi 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第11期2166-2171,I0006,共7页
Sc and Y are key rare earth elements and are widely used in lamp phosphors,lasers and high-performance alloys.However,highly efficient extraction and separation of Sc^(3+) and Y^(3+) is laborious,harmful,slow,and cost... Sc and Y are key rare earth elements and are widely used in lamp phosphors,lasers and high-performance alloys.However,highly efficient extraction and separation of Sc^(3+) and Y^(3+) is laborious,harmful,slow,and costly,strongly necessitating more efficient extraction and separation techniques.Here,we produced hydrated Sc^(3+)-and hydrated Y^(3+)-controlled graphene oxide(GO) membranes and find that both hydrated cations were completely self-rejected by the membrane.By combining this selfrejection effect of the larger hydrated Y^(3+)-controlled GO membrane and the rapid passage of the membrane through the smaller hydrated Sc^(3+),we proposed a strategy to separate Sc^(3+) and Y^(3+) by using a hydrated Y^(3+)-controlled GO membrane.The experimental results show that the permeation rate of Sc^(3+) exceeds that of Y^(3+) when the separation factor reaches 4.02,which can be attributed to the interlayer sieving effects of the GO membrane.Our finding illustrates the use of a forward osmosis process with a GO membrane for the efficient separation of Sc^(3+) and Y^(3+) by interlayer sieving,which provides a new effective and eco-friendly method for the separation of rare earth elements. 展开更多
关键词 Rare earths Graphene oxide membrane interlayer spacing Membrane separation Forward osmosis
原文传递
Removal of rhodamine B from aqueous solutions using vanadium pentoxide/titanium butyl oxide hybrid xerogels
16
作者 Surayya Mukhtar 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期407-413,共7页
A stable and insoluble V2O5·n H2O/tetra-n-butyl titanate(TBO) hybrid xerogel was synthesized by the sol–gel method. This novel material proved to be an efficient absorbent with an absorption capacity of 179 mg... A stable and insoluble V2O5·n H2O/tetra-n-butyl titanate(TBO) hybrid xerogel was synthesized by the sol–gel method. This novel material proved to be an efficient absorbent with an absorption capacity of 179 mg·g^-1for Rhodamine B(Rh B) in water due to its unique layered structure, which can effectively accommodate Rh B molecules between its layers as demonstrated by XRD and FTIR spectroscopic analyses. 展开更多
关键词 vanadium titanium titanate layered accommodate rhodamine insoluble tetra spacing interlayer
下载PDF
High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage 被引量:12
17
作者 Dongqin Su Man Huang +5 位作者 Junhao Zhang Xingmei Guo Jiale Chen Yanchun Xue Aihua Yuan Qinghong Kong 《Nano Research》 SCIE EI CAS CSCD 2020年第10期2862-2868,共7页
Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate a... Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g^−1 at 0.1 A·g^−1 and 242.5 mAh·g^−1 at 1 A·g^−1 for 2,500 cycles with exceptional rate capability of 5 A·g^−1 with reversible capacities of 201.2 mAh·g^−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures. 展开更多
关键词 hierarchical porous carbon networks high N doping expanded interlayer spacing ANODE sodium-ion batteries
原文传递
Preparation and Characterization of Exfoliated Poly(ethyleneterephthalate)/Montmorillonite Nanocomposites Using Modified MMTs with Variable Content of Antimony Acetate 被引量:3
18
作者 Wang, xiaoqun Wang, Yaqing Zhao, Zhenlu Zhu, Xiaoguang Nie, Cong Du, Shanyi 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第6期1278-1284,共7页
Poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposite was prepared by the direct polymerization with MMTs modified with variable content of antimony acetate (Sb(OAc)3), which was also used a... Poly(ethylene terephthalate) (PET)/montmorillonite (MMT) nanocomposite was prepared by the direct polymerization with MMTs modified with variable content of antimony acetate (Sb(OAc)3), which was also used as catalyst polymerization. The modified MMTs (AS-Sb-MMT) were prepared by intercalating both Sb(OAc)3 and amphoteric surfactant (AS) into MMT layers. Nine kinds of Sb-MMTs [MMT treated with Sb(OAc)3] with different Sb content were obtained, but only six kinds of PET/MMT nanocomposites could be prepared. ICPAES was used to characterize Sb content of modified MMT, XRD was used to characterize interlayer spacing, IR spectroscopy was used to characterize composition change of Sb catalyst in modified MMT and TEM was used to investigate micromorphology of PET/MMT nanocomposites. Several results are obtained, i.e., (a) Sb content of Sb-MMT is affected by both drying temperature and washing-drying sequence, (b) compared with Na-MMT (unmodified MMT), the change in the interlayer spacing of Sb-MMT is attributed to the solvent ethylene glycol (EG) rather than the intercalated or absorbed Sb(OAc)3, (c) based on this, a model is developed to describe the swelling of Na-MMT and modified MMT by EG and the effect of drying temperature on the interlayer spacing, (d) exfoliation state of MMT in PET matrix of nanocomposites is controlled not only by Sb content and interlayer spacing, but also by the composition of Sb catalyst in modified MMT. 展开更多
关键词 organic-inorganic hybrid composites CLAY polyethylene terephthalate (PET) EXFOLIATED interlayer spacing
原文传递
Crystal-chemistry insight into the photocatalytic activity of BiOCI_(x)Br_(1_x)nanoplate solid solutions 被引量:3
19
作者 Huan-Yan XU Xu HAN +2 位作者 Qu TAN Ke-Jia WU Shu-Yan QI 《Frontiers of Materials Science》 SCIE CSCD 2017年第2期120-129,共10页
In this study,a facile alcoholysis method was developed to synthesize BiOCI_(x)Br_(1_x)nanoplates at room temperature and atmospheric pressure.In this route,strong acid or alkaline environment was absolutely avoided t... In this study,a facile alcoholysis method was developed to synthesize BiOCI_(x)Br_(1_x)nanoplates at room temperature and atmospheric pressure.In this route,strong acid or alkaline environment was absolutely avoided to realize the high exposure of{001}crystal facets.The regular changes in XRD peaks and cell parameters as a function of the Br content strongly declared that the obtained BiOCIxBrl_x products belonged to a group of solid solutions.The 2D nanosheets with in-plane wrinkles were clearly observed in TEM images.Interestingly,as the Br content increased,band gaps of BiOCI_(x)Br_(1_x)solid solutions gradually decreased.The photocatalytic degradation of RhB under simulated sunlight irradiation indicated that BiOCI0.sBr0.5 had the best photocatalytic activity.From the viewpoint of crystal chemistry,the photocatalytic activity of BiOCI_(x)Br_(1_x)solid solutions was closely related with the exposure amount of{001}facets,interlayer spacing of(001)plane and energy-level position of valence band. 展开更多
关键词 BiOCI_(x)Br_(1_x)solid solutions {001}facets exposure internal electric field interlayer spacing energy-level position
原文传递
In-situ conversion growth of carbon-coated MoS_(2)/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries 被引量:2
20
作者 Yadong Liu Cheng Tang +3 位作者 Weiwei Sun Guanjia Zhu Aijun Du Haijiao Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第7期8-15,共8页
Layered structure MoS_(2) nanosheets have shown great potential for energy storage applications.However,the methodology for elaborately controllable growth of MoS_(2) onto carbonaceous matrix for promoting the electro... Layered structure MoS_(2) nanosheets have shown great potential for energy storage applications.However,the methodology for elaborately controllable growth of MoS_(2) onto carbonaceous matrix for promoting the electrochemical performance is highly desirable.Herein,a high-effective,all-in-one in-situ conversion growth strategy has been proposed to construct a stable sandwich-type nanostructure.The formation of the optimized C-MoS_(2)/NCNTs product undergoes a dissolution-recrystallization process,in which ultra-thin carbon layer-coated MoS_(2) nanosheets densely assembled onto the surface of polyimide(PI)derived N-doped carbon nanotubes(CNTs).Theoretical simulation reveals that MoS_(2) nanosheets possessing an expanded interlayer spacing of 0.92 nm can greatly reduce the barrier energy of Na ions mitigation.Ac-cordingly,the as-made C-MoS_(2)/NCNTs anode delivers superior cycling stability(82%capacity retention after 400 cycles at 1 A g^(−1))and rate performance(348 mAh g^(−1) at 2 A g^(−1)).The results demonstrate that the expanded MoS_(2) interlayer distance,ultrathin outer carbon coating,and N-doped CNTs matrix together accounts for the outstanding sodium storage capability for the C-MoS_(2)/NCNTs electrode. 展开更多
关键词 MoS_(2)nanosheets In-situ conversion Carbon coating Expanded interlayer spacing Sodium-ion batteries
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部