The technology of homology cloning and anchored PCR was used to clone the IL-1β gene from the Japanese sea perch (Lateolabrax iaponicus). The full-length cDNA of sea perch IL-1β was 1 310 bp, including a 5' untra...The technology of homology cloning and anchored PCR was used to clone the IL-1β gene from the Japanese sea perch (Lateolabrax iaponicus). The full-length cDNA of sea perch IL-1β was 1 310 bp, including a 5' untranslated regiop (UTR) of 136 bp, a 3' UTR ot 430 bp, and an ORF of 774 bp encoding a polypeptide of 258 amino acids with an estimated molecular mass of 29.31 kDa. The searches for nucleotides and protein sequence similarities with the BLAST analysis indicated that the deduced amino acid sequence of sea perch IL-1β was homological to the IL-1β in other fish species and even the mammalian. Conserved signature sequences of the IL-1β gene family were found in the sea perch IL-1β deduced amino acid sequence. Temporal expressions of the IL-1β gene in LPS or iridovirus challenged group and in control group were measured by the semi-quantitative RT-PCR. The mRNA transcripts of IL-1β could be detected in head-kidney, spleen, liver, gill and heart of the healthy individuals, and the expression level of IL-1β in head-kidney, spleen and gill was higher than that in liver and heart, but it was hard to be detected in the brain. After being stimulated by the LPS or iridovirus, the IL-1β expression in most of examined tissues was up-regulated, and also could be detected in the brain. These results indicated that the expression of sea perch IL-1β was constitutive and could be up-regulated by immune effector stimulation. Therefore the sea perch IL-1β could play a critical role in the host-pathogen interaction.展开更多
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not complet...Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact mo...BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.展开更多
文摘The technology of homology cloning and anchored PCR was used to clone the IL-1β gene from the Japanese sea perch (Lateolabrax iaponicus). The full-length cDNA of sea perch IL-1β was 1 310 bp, including a 5' untranslated regiop (UTR) of 136 bp, a 3' UTR ot 430 bp, and an ORF of 774 bp encoding a polypeptide of 258 amino acids with an estimated molecular mass of 29.31 kDa. The searches for nucleotides and protein sequence similarities with the BLAST analysis indicated that the deduced amino acid sequence of sea perch IL-1β was homological to the IL-1β in other fish species and even the mammalian. Conserved signature sequences of the IL-1β gene family were found in the sea perch IL-1β deduced amino acid sequence. Temporal expressions of the IL-1β gene in LPS or iridovirus challenged group and in control group were measured by the semi-quantitative RT-PCR. The mRNA transcripts of IL-1β could be detected in head-kidney, spleen, liver, gill and heart of the healthy individuals, and the expression level of IL-1β in head-kidney, spleen and gill was higher than that in liver and heart, but it was hard to be detected in the brain. After being stimulated by the LPS or iridovirus, the IL-1β expression in most of examined tissues was up-regulated, and also could be detected in the brain. These results indicated that the expression of sea perch IL-1β was constitutive and could be up-regulated by immune effector stimulation. Therefore the sea perch IL-1β could play a critical role in the host-pathogen interaction.
基金supported by UniversitàCattolica(D1 intramural funds to RP)Italian Ministry of University and Research(PRIN 2022ZYLB7B,P2022YW7BP funds to CG).
文摘Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
基金Supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBJC00001the Key Discipline Special Project of Tianjin Municipal Health Commission,No.TJWJ2022XK016.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.