Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical...Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.展开更多
Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and...Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways.展开更多
Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,Br...Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,BrM remains a major clinical challenge due to its rising incidence and lack of effective treatment strategies.Recent evidence suggested a potential role of lipid metabolic reprogramming in breast cancer brain metastasis(BCBrM),but the underlying mechanisms are far from being fully elucidated.Methods Through analysis of BCBrM transcriptome data from mice and patients,and immunohistochemical validation on patient tissues,we identified and verified the specific down-regulation of retinoic acid receptor responder 2(RARRES2),a multifunctional adipokine and chemokine,in BrM of TNBC.We investigated the effect of aberrant RARRES2 expression of BrM in both in vitro and in vivo studies.Key signaling pathway components were evaluated using multi-omics approaches.Lipidomics were performed to elucidate the regulation of lipid metabolic reprogramming of RARRES2.Results We found that downregulation of RARRES2 is specifically associated with BCBrM,and that RARRES2 deficiency promoted BCBrM through lipid metabolic reprogramming.Mechanistically,reduced expression of RARRES2 in brain metastatic potential TNBC cells resulted in increased levels of glycerophospholipid and decreased levels of triacylglycerols by regulating phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway to facilitate the survival of breast cancer cells in the unique brain microenvironment.Conclusions Our work uncovers an essential role of RARRES2 in linking lipid metabolic reprogramming and the development of BrM.RARRES2-dependent metabolic functions may serve as potential biomarkers or therapeutic targets for BCBrM.展开更多
BACKGROUND Mycoplasma pneumoniae(MP)frequently causes respiratory infections in children,whereas Epstein-Barr virus(EBV)typically presents subclinical manifestations in immunocompetent pediatric populations.The incide...BACKGROUND Mycoplasma pneumoniae(MP)frequently causes respiratory infections in children,whereas Epstein-Barr virus(EBV)typically presents subclinical manifestations in immunocompetent pediatric populations.The incidence of MP and EBV coinfections is often overlooked clinically,with the contributory role of EBV in pulmonary infections alongside MP remaining unclear.AIM To evaluate the serum concentrations of interleukin-2(IL-2)and interleukin-12(IL-12)in pediatric patients with MP pneumonia co-infected with EBV and assess their prognostic implications.METHODS We retrospectively analyzed clinical data from patients diagnosed with MP and EBV co-infection,isolated MP infection,and a control group of healthy children,spanning from January 1,2018 to December 31,2021.Serum IL-2 and IL-12 levels were quantified using enzyme-linked immunosorbent assay.Logistic regression was employed to identify factors influencing poor prognosis,while receiver operating characteristic(ROC)curves evaluated the prognostic utility of serum IL-2 and IL-12 levels in co-infected patients.RESULTS The co-infection group exhibited elevated serum IL-2 and C-reactive protein(CRP)levels compared to both the MP-only and control groups,with a reverse trend observed for IL-12(P<0.05).In the poor prognosis cohort,elevated CRP and IL-2 levels,alongside prolonged fever duration,contrasted with reduced IL-12 levels(P<0.05).Logistic regression identified elevated IL-2 as an independent risk factor and high IL-12 as a protective factor for adverse outcomes(P<0.05).ROC analysis indicated that the area under the curves for IL-2,IL-12,and their combination in predicting poor prognosis were 0.815,0.895,and 0.915,respectively.CONCLUSION Elevated serum IL-2 and diminished IL-12 levels in pediatric patients with MP and EBV co-infection correlate with poorer prognosis,with combined IL-2 and IL-12 levels offering enhanced predictive accuracy.展开更多
Three-dimensional(3D)cell spheroid models combined with mass spectrometry imaging(MSI)enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions.Her...Three-dimensional(3D)cell spheroid models combined with mass spectrometry imaging(MSI)enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions.Herein,airflow-assisted desorption electrospray ionization-MSI(AFADESI-MSI)was coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone(AMI).High-coverage imaging of>1100 endogenous metabolites in hepatocyte spheroids was achieved using AFADESI-MSI.Following AMI treatment at different times,15 metabolites of AMI involved in Ndesethylation,hydroxylation,deiodination,and desaturation metabolic reactions were identified,and according to their spatiotemporal dynamics features,the metabolic pathways of AMI were proposed.Subsequently,the temporal and spatial changes in metabolic disturbance within spheroids caused by drug exposure were obtained via metabolomic analysis.The main dysregulated metabolic pathways included arachidonic acid and glycerophospholipid metabolism,providing considerable evidence for the mechanism of AMI hepatotoxicity.In addition,a biomarker group of eight fatty acids was selected that provided improved indication of cell viability and could characterize the hepatotoxicity of AMI.The combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal information for drugs,drug metabolites,and endogenous metabolites after AMI treatment,providing an effective tool for in vitro drug hepatotoxicity evaluation.展开更多
Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol...Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength.展开更多
BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against...BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against obesity via diverse me-chanisms,while its specific effects on visceral adipose tissue(VAT)remain to be fully elucidated.AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes.METHODS Metabolic parameters were collected,encompassing body weight,weights of visceral and subcutaneous adipose tissues(VAT and SAT),random blood glucose levels,glucose tolerance,insulin tolerance,and overall body composition.The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software.Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses,respectively.RESULTS Feeding a high-fat diet(HFD)moderately increased the weights of both VAT and SAT,but this increase was mitigated by the protective effect of endogenous E2.Conversely,ovariectomy(OVX)led to a significant increase in VAT weight and the VAT/SAT weight ratio,and this increase was also reversed with E2 treatment.Notably,OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone,signaling a widespread reduction in lipid metabolic activity,which was completely counteracted by E2 adminis-tration.This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level.CONCLUSION In conclusion,the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat,leading to a universally decreased lipid metabolic status in E2 deficient mice.E2 treatment effectively reversed this condition,shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.展开更多
BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)i...BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)is also frequently reported in patients hospitalised with coronavirus disease 2019(COVID-19),while preexisting MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy.Mechanisms of injury at the cellular level remain unclear,but it may be significant that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)which causes COVID-19,uses angiotensin-converting expression enzyme 2(ACE2),a key regulator of the‘anti-inflammatory’arm of the renin-angiotensin system,for viral attachment and host cell invasion.AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19.METHODS ACE2 protein levels and localisation,and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum(isolated hepatocellular steatosis,metabolic dysfunction-associated steatohepatitis(MASH)+/-fibrosis,end-stage cirrhosis)and in post-mortem tissues from patients who had died with severe COVID-19,using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas,followed by quantification using machine learning-based image pixel classifiers.RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes.Strikingly,ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis.ACE2 protein levels and histological fibrosis are not associated,but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum.Hepatic ACE2 levels are also increased in COVID-19 patients,especially those showing evidence of LI,but are not correlated with the presence of SARS-CoV-2 virus in the liver.However,there is a clear association between the hepatic lipid droplet content and the presence of the virus,suggesting a possible functional link.CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI,while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication,accelerating MASLD progression and COVID-19-mediated liver damage.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the rela...BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.展开更多
Scope: Circadian disorder and high-fat diet(HFD)can disturb lipid metabolism homeostasis and may promote the development of various metabolic diseases. The relationship between them is of great concern. This study aim...Scope: Circadian disorder and high-fat diet(HFD)can disturb lipid metabolism homeostasis and may promote the development of various metabolic diseases. The relationship between them is of great concern. This study aimed to explore the effects of Per1/Per2 double knockout(DKO)on hepatic lipid metabolism in mice under HFD and HFD with docosahexaenoic acid(DHA)substitution. Methods and results: Both wild type(WT)and DKO male C57BL/6 mice were fed with normal chow diet(CON), HFD, or HFD with DHA substitution(AO)for 15 weeks. At the end of the experiment, mice were sacrificed at zeitgeber time(ZT)0(7:00 am)or ZT12(7:00 pm). Pathological indicators were determined using histological and biochemical methods. Hepatic transcriptome sequencing analysis showed that DKO mice exhibited multiple dysfunctions in diurnal rhythm, drug metabolism, cell cycle, cancer pathways, and lipid metabolism. HFD had greater effects on fatty acid oxidation and cholesterol synthesis and metabolism in Per1-/-Per2-/-mice, which was improved by DHA substitution. Conclusions: Per1/Per2 played an important role in the circadian regulation of hepatic lipid metabolism, and DKO mice were more sensitive to HFD. DHA can improve circadian-related lipid metabolism disruption induced by HFD in mice.展开更多
[Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on c...[Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on chlorophyll content,malondialdehyde(MDA),superoxide dismutase(SOD),peroxidase(POD) and Proline(Pro) content of leaves from different alkali tolerance varieties of S.rebaudiana [No.2 Shoutian(relative alkali tolerance variety) and No.4 Zhongshan(alkali sensitivity variety)] were studied.[Result] 1.2 g/L of Na2CO3 stress made that the chlorophyll contents of leaves from No.2 Shoutian and No.4 Zhongshan seedlings both decreased in different degrees.Moreover,MDA content of No.4 Zhongshan was higher than control during the whole stress period,and the largest increase amplitude was 43.2%.MDA content of No.2 Shoutian was lower than control in early and latter periods of stress,and increased the maximum on the 14th day of alkali stress,which was 24.4% higher than control.SOD activities of No.2 Shoutian and No.4 Zhongshan both showed a trend of first increasing and declining then in the alkali stress period,but the increasing extent of SOD activity in No.2 Shoutian was higher than that in No.4 Zhongshan.In latter period of Na2CO3 stress,SOD activity of No.2 Shoutian declined,but POD activity was higher than that of No.4 Zhongshan.It illustrated that POD had stronger scavenging capability of active oxygen.Pro contents of No.2 Shoutian and No.4 Zhongshan were higher than control in the stress period.It showed that the osmoregulation of Pro might not be key regulatory factor of alkali tolerance difference of the two S.rebaudiana varieties.[Conclusion] The research not only provided theoretical basis for further breeding new salt tolerance variety of S.rebaudiana,but also had important significance for improving utilized ratio of kaline soil and growing environment for mudflat in China.展开更多
文摘Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.
文摘Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways.
基金supported by the National Natural Science Foundation of China(82203185,82230058,82172875 and 82073094)the National Key Research and Development Program of China(2021YFF1201300 and 2022YFE0103600)+3 种基金the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-014,2021-I2M-1-022,and 2022-I2M-2-001)the Open Issue of State Key Laboratory of Molecular Oncology(SKL-KF-2021-16)the Independent Issue of State Key Laboratory of Molecular Oncology(SKL-2021-16)the Beijing Hope Marathon Special Fund of Chinese Cancer Foundation(LC2020B14).
文摘Background Triple negative breast cancer(TNBC),the most aggressive subtype of breast cancer,is characterized by a high incidence of brain metastasis(BrM)and a poor prognosis.As the most lethal form of breast cancer,BrM remains a major clinical challenge due to its rising incidence and lack of effective treatment strategies.Recent evidence suggested a potential role of lipid metabolic reprogramming in breast cancer brain metastasis(BCBrM),but the underlying mechanisms are far from being fully elucidated.Methods Through analysis of BCBrM transcriptome data from mice and patients,and immunohistochemical validation on patient tissues,we identified and verified the specific down-regulation of retinoic acid receptor responder 2(RARRES2),a multifunctional adipokine and chemokine,in BrM of TNBC.We investigated the effect of aberrant RARRES2 expression of BrM in both in vitro and in vivo studies.Key signaling pathway components were evaluated using multi-omics approaches.Lipidomics were performed to elucidate the regulation of lipid metabolic reprogramming of RARRES2.Results We found that downregulation of RARRES2 is specifically associated with BCBrM,and that RARRES2 deficiency promoted BCBrM through lipid metabolic reprogramming.Mechanistically,reduced expression of RARRES2 in brain metastatic potential TNBC cells resulted in increased levels of glycerophospholipid and decreased levels of triacylglycerols by regulating phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway to facilitate the survival of breast cancer cells in the unique brain microenvironment.Conclusions Our work uncovers an essential role of RARRES2 in linking lipid metabolic reprogramming and the development of BrM.RARRES2-dependent metabolic functions may serve as potential biomarkers or therapeutic targets for BCBrM.
文摘BACKGROUND Mycoplasma pneumoniae(MP)frequently causes respiratory infections in children,whereas Epstein-Barr virus(EBV)typically presents subclinical manifestations in immunocompetent pediatric populations.The incidence of MP and EBV coinfections is often overlooked clinically,with the contributory role of EBV in pulmonary infections alongside MP remaining unclear.AIM To evaluate the serum concentrations of interleukin-2(IL-2)and interleukin-12(IL-12)in pediatric patients with MP pneumonia co-infected with EBV and assess their prognostic implications.METHODS We retrospectively analyzed clinical data from patients diagnosed with MP and EBV co-infection,isolated MP infection,and a control group of healthy children,spanning from January 1,2018 to December 31,2021.Serum IL-2 and IL-12 levels were quantified using enzyme-linked immunosorbent assay.Logistic regression was employed to identify factors influencing poor prognosis,while receiver operating characteristic(ROC)curves evaluated the prognostic utility of serum IL-2 and IL-12 levels in co-infected patients.RESULTS The co-infection group exhibited elevated serum IL-2 and C-reactive protein(CRP)levels compared to both the MP-only and control groups,with a reverse trend observed for IL-12(P<0.05).In the poor prognosis cohort,elevated CRP and IL-2 levels,alongside prolonged fever duration,contrasted with reduced IL-12 levels(P<0.05).Logistic regression identified elevated IL-2 as an independent risk factor and high IL-12 as a protective factor for adverse outcomes(P<0.05).ROC analysis indicated that the area under the curves for IL-2,IL-12,and their combination in predicting poor prognosis were 0.815,0.895,and 0.915,respectively.CONCLUSION Elevated serum IL-2 and diminished IL-12 levels in pediatric patients with MP and EBV co-infection correlate with poorer prognosis,with combined IL-2 and IL-12 levels offering enhanced predictive accuracy.
基金funded by the National Natural Science Foundation of China(Grant No.:21874156)the Chinese Academy of Medical Science(CAMS)Innovation Fund for Medical Sciences(Grant No.:2021-1-I2M-028).
文摘Three-dimensional(3D)cell spheroid models combined with mass spectrometry imaging(MSI)enables innovative investigation of in vivo-like biological processes under different physiological and pathological conditions.Herein,airflow-assisted desorption electrospray ionization-MSI(AFADESI-MSI)was coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone(AMI).High-coverage imaging of>1100 endogenous metabolites in hepatocyte spheroids was achieved using AFADESI-MSI.Following AMI treatment at different times,15 metabolites of AMI involved in Ndesethylation,hydroxylation,deiodination,and desaturation metabolic reactions were identified,and according to their spatiotemporal dynamics features,the metabolic pathways of AMI were proposed.Subsequently,the temporal and spatial changes in metabolic disturbance within spheroids caused by drug exposure were obtained via metabolomic analysis.The main dysregulated metabolic pathways included arachidonic acid and glycerophospholipid metabolism,providing considerable evidence for the mechanism of AMI hepatotoxicity.In addition,a biomarker group of eight fatty acids was selected that provided improved indication of cell viability and could characterize the hepatotoxicity of AMI.The combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal information for drugs,drug metabolites,and endogenous metabolites after AMI treatment,providing an effective tool for in vitro drug hepatotoxicity evaluation.
基金supported by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced Project,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength.
基金Supported by National Natural Science Foundation of China,No.81270901 and No.81970672.
文摘BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against obesity via diverse me-chanisms,while its specific effects on visceral adipose tissue(VAT)remain to be fully elucidated.AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes.METHODS Metabolic parameters were collected,encompassing body weight,weights of visceral and subcutaneous adipose tissues(VAT and SAT),random blood glucose levels,glucose tolerance,insulin tolerance,and overall body composition.The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software.Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses,respectively.RESULTS Feeding a high-fat diet(HFD)moderately increased the weights of both VAT and SAT,but this increase was mitigated by the protective effect of endogenous E2.Conversely,ovariectomy(OVX)led to a significant increase in VAT weight and the VAT/SAT weight ratio,and this increase was also reversed with E2 treatment.Notably,OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone,signaling a widespread reduction in lipid metabolic activity,which was completely counteracted by E2 adminis-tration.This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level.CONCLUSION In conclusion,the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat,leading to a universally decreased lipid metabolic status in E2 deficient mice.E2 treatment effectively reversed this condition,shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.
基金Supported by University of Edinburgh Hepatology Laboratory Internal Fundingthe Liver Endowment Funds of the Edinburgh&Lothian Health Foundation.
文摘BACKGROUND Metabolic dysfunction-associated steatotic liver disease(MASLD),characterised by hepatic lipid accumulation,causes inflammation and oxidative stress accompanied by cell damage and fibrosis.Liver injury(LI)is also frequently reported in patients hospitalised with coronavirus disease 2019(COVID-19),while preexisting MASLD increases the risk of LI and the development of COVID-19-associated cholangiopathy.Mechanisms of injury at the cellular level remain unclear,but it may be significant that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)which causes COVID-19,uses angiotensin-converting expression enzyme 2(ACE2),a key regulator of the‘anti-inflammatory’arm of the renin-angiotensin system,for viral attachment and host cell invasion.AIM To determine if hepatic ACE2 levels are altered during progression of MASLD and in patients who died with severe COVID-19.METHODS ACE2 protein levels and localisation,and histological fibrosis and lipid droplet accumulation as markers of MASLD were determined in formalin-fixed liver tissue sections across the MASLD pathological spectrum(isolated hepatocellular steatosis,metabolic dysfunction-associated steatohepatitis(MASH)+/-fibrosis,end-stage cirrhosis)and in post-mortem tissues from patients who had died with severe COVID-19,using ACE2 immunohistochemistry and haematoxylin and eosin and picrosirius red staining of total collagen and lipid droplet areas,followed by quantification using machine learning-based image pixel classifiers.RESULTS ACE2 staining is primarily intracellular and concentrated in the cytoplasm of centrilobular hepatocytes and apical membranes of bile duct cholangiocytes.Strikingly,ACE2 protein levels are elevated in non-fibrotic MASH compared to healthy controls but not in the progression to MASH with fibrosis and in cirrhosis.ACE2 protein levels and histological fibrosis are not associated,but ACE2 and liver lipid droplet content are significantly correlated across the MASLD spectrum.Hepatic ACE2 levels are also increased in COVID-19 patients,especially those showing evidence of LI,but are not correlated with the presence of SARS-CoV-2 virus in the liver.However,there is a clear association between the hepatic lipid droplet content and the presence of the virus,suggesting a possible functional link.CONCLUSION Hepatic ACE2 levels were elevated in nonfibrotic MASH and COVID-19 patients with LI,while lipid accumulation may promote intra-hepatic SARS-CoV-2 replication,accelerating MASLD progression and COVID-19-mediated liver damage.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.
基金supported by National Natural Science Foundation of China (31271855)the ThirteenFifth Mega-Scientific Project (2017ZX10201301-003-003)+1 种基金Wuhan science and technology project (2018020402011230)the central government guides local science and technology development projects (2019ZYYD)。
文摘Scope: Circadian disorder and high-fat diet(HFD)can disturb lipid metabolism homeostasis and may promote the development of various metabolic diseases. The relationship between them is of great concern. This study aimed to explore the effects of Per1/Per2 double knockout(DKO)on hepatic lipid metabolism in mice under HFD and HFD with docosahexaenoic acid(DHA)substitution. Methods and results: Both wild type(WT)and DKO male C57BL/6 mice were fed with normal chow diet(CON), HFD, or HFD with DHA substitution(AO)for 15 weeks. At the end of the experiment, mice were sacrificed at zeitgeber time(ZT)0(7:00 am)or ZT12(7:00 pm). Pathological indicators were determined using histological and biochemical methods. Hepatic transcriptome sequencing analysis showed that DKO mice exhibited multiple dysfunctions in diurnal rhythm, drug metabolism, cell cycle, cancer pathways, and lipid metabolism. HFD had greater effects on fatty acid oxidation and cholesterol synthesis and metabolism in Per1-/-Per2-/-mice, which was improved by DHA substitution. Conclusions: Per1/Per2 played an important role in the circadian regulation of hepatic lipid metabolism, and DKO mice were more sensitive to HFD. DHA can improve circadian-related lipid metabolism disruption induced by HFD in mice.
基金Supported by Technological Support Program of Science and Technology Department in Jiangsu Province (BE2009322)Achievement Extension Program of Technology Division in Nanjing City(200901001)Agricultural Three-new-engineering Program in Jiangsu Province (SX[2011]247)~~
文摘[Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on chlorophyll content,malondialdehyde(MDA),superoxide dismutase(SOD),peroxidase(POD) and Proline(Pro) content of leaves from different alkali tolerance varieties of S.rebaudiana [No.2 Shoutian(relative alkali tolerance variety) and No.4 Zhongshan(alkali sensitivity variety)] were studied.[Result] 1.2 g/L of Na2CO3 stress made that the chlorophyll contents of leaves from No.2 Shoutian and No.4 Zhongshan seedlings both decreased in different degrees.Moreover,MDA content of No.4 Zhongshan was higher than control during the whole stress period,and the largest increase amplitude was 43.2%.MDA content of No.2 Shoutian was lower than control in early and latter periods of stress,and increased the maximum on the 14th day of alkali stress,which was 24.4% higher than control.SOD activities of No.2 Shoutian and No.4 Zhongshan both showed a trend of first increasing and declining then in the alkali stress period,but the increasing extent of SOD activity in No.2 Shoutian was higher than that in No.4 Zhongshan.In latter period of Na2CO3 stress,SOD activity of No.2 Shoutian declined,but POD activity was higher than that of No.4 Zhongshan.It illustrated that POD had stronger scavenging capability of active oxygen.Pro contents of No.2 Shoutian and No.4 Zhongshan were higher than control in the stress period.It showed that the osmoregulation of Pro might not be key regulatory factor of alkali tolerance difference of the two S.rebaudiana varieties.[Conclusion] The research not only provided theoretical basis for further breeding new salt tolerance variety of S.rebaudiana,but also had important significance for improving utilized ratio of kaline soil and growing environment for mudflat in China.