Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ...Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.展开更多
CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selec...CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selectivity were obtained. The surface formate intermediates generated during the reverse water-gas shift reaction at 400 ℃ were identified using in situ diffuse-reflectance infra- red Fourier-transform spectroscopy. The formate consumption to give CO and H20, determined using mass spectrometry, indicated that the reaction proceeded via an associative formate mecha- nism; this contributes to the high Au/CeO2 catalytic activity at low temperatures.展开更多
Carbon dioxide(CO2) capture using magnesium oxide(MgO)-based adsorbents at intermediate temperatures has been regarded as a very prospective technology for their relatively high adsorption capacity,low cost, and w...Carbon dioxide(CO2) capture using magnesium oxide(MgO)-based adsorbents at intermediate temperatures has been regarded as a very prospective technology for their relatively high adsorption capacity,low cost, and wide availability. During the past few years, great effort has been devoted to the fabrication of molten salts-modified MgO-based adsorbents. The extraordinary progress achieved by coating with molten salts greatly promotes the COcapture capacity of MgO-based adsorbents. Therefore, we feel it necessary to deliver a timely review on this type of COcapturing materials, which will benefit the researchers working in both academic and industrial areas. In this work, we classified the molten saltsmodified MgO adsorbents into four categories:(1) homogenous molten salt-modified MgO adsorbents,(2) molten salt-modified double salts-based MgO adsorbents,(3) mixed molten salts-modified MgO adsorbents, and(4) molten salts-modified MgO-based mixed oxides adsorbents. This contribution critically reviews the recent developments in the synthetic method, adsorption capacity, reaction kinetics, promotion mechanism, operational conditions and regenerability of the molten salts-modified MgO COadsorbents. The challenges and prospects in this promising field of molten salts-modified MgO COadsorbents in real applications are also briefly mentioned.展开更多
Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon product...Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products.However,Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO*provided for the C‐C coupling.Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO*formation on Pd,an intimate CuPd(100)interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation.Density functional theory(DFT)calculations showed that the CuPd(100)interface enhanced the CO2 adsorption and decreased the CO2*hydrogenation energy barrier,which was beneficial for the C‐C coupling.The potential‐determining step(PDS)barrier of CO2 to C2 products on the CuPd(100)interface was 0.61 eV,which was lower than that on Cu(100)(0.72 eV).Encouraged by the DFT calculation results,the CuPd(100)interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy.CO2 temperature‐programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2*hydrogenation ability of the CuPd(100)interface catalyst.Specifically,the obtained CuPd(100)interface catalyst exhibited a C2 Faradaic efficiency of 50.3%±1.2%at‒1.4 VRHE in 0.1 M KHCO3,which was 2.1 times higher than that of the Cu catalyst(23.6%±1.5%).This study provides the basis for the rational design of Cu‐based electrocatalysts for the generation of multicarbon products by fine‐tuning the intermediate reaction barriers.展开更多
The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect th...The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.展开更多
Excess greenhouse gas emissions,primarily carbon dioxide(CO_(2)),have caused major environmental concerns worldwide.The electroreduction of CO_(2)into valuable chemicals using renewable energy is an ecofriendly approa...Excess greenhouse gas emissions,primarily carbon dioxide(CO_(2)),have caused major environmental concerns worldwide.The electroreduction of CO_(2)into valuable chemicals using renewable energy is an ecofriendly approach to achieve carbon neutrality.In this regard,copper(Cu)has attracted considerable attention as the only known metallic catalyst available for converting CO_(2)to high-value multicarbon(C_(2+))products.The production of C_(2+)involves complicated C-C coupling steps and thus imposes high demands on intermediate regulation.In this review,we discuss multiple strategies for modulating intermediates to facilitate C_(2+)formation on Cu-based catalysts.Furthermore,several sophisticated in situ characterization techniques are outlined for elucidating the mechanism of C-C coupling.Lastly,the challenges and future directions of CO_(2)electroreduction to C_(2+)are envisioned.展开更多
This exploratory study examines whether genre has an impact on syntactic complexity and holistic rating in EFL writing. Over 300 sample texts produced by intermediate learners were collected from a test and some regul...This exploratory study examines whether genre has an impact on syntactic complexity and holistic rating in EFL writing. Over 300 sample texts produced by intermediate learners were collected from a test and some regular after-class assignments for English writing courses. Each participant completed two writing tasks, one argumentative and the other narrative. Results show that genre type has a significant impact on L2 syntactic complexity. Genre effect is found stronger with timed writing tasks. L2 holistic ratings show correlation with syntactic complexity on the different measure(s) depending on genre type and planning conditions. Regression analyses reveal that for timed writing tasks, clausal density(clauses per sentence) is a reliable predictor for holistic assessment on intermediate EFL learners’ writing quality. It is found to account for 6% of the score variance for timed writing and 10% for timed argumentative writing. Genre is evidenced to be related to EFL writing holistic ratings. Closer examination indicates that while syntactic complexity is predictive of holistic writing scores for argumentative writing, it does not correlate with holistic scores for narrative writing. Other linguistic features rather than syntactic complexity may be accountable. Overall, the study lends support to genre effect in the relationship between syntactic complexity and L2 writing quality holistic rating.展开更多
2-(4-Hydroxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-aldehyde 8,the key intermediate of sinaiticin 10,was synthesized in 6 step from caffeic acid 4 and 4- hydroxybenzsaldehyde 1.the coupling reaction is the key step.
This paper proposes the automatic generation of the middle frame and the middle frame automatic coloring method of two-dimensional animation process, users simply given starting key frames and end key frames, Accordin...This paper proposes the automatic generation of the middle frame and the middle frame automatic coloring method of two-dimensional animation process, users simply given starting key frames and end key frames, According to the algorithm proposed in this paper, the system can automatically generate all key frames that in the middle, and based on the starting key frame and termination of key frame color, the generated in the middle of the frame will been automatically chromatically. The experimental results show that, the automatic generation of intermediate frames and the middle frame automatic coloring method of two-dimensional animation is proposed in this paper production process can be successfully used in animation production, greatlyimproving the efficiency of animation.展开更多
基金financially supported by the National Natural Science Foundation of China(22309032)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+1 种基金the Science and Technology Program of Guangzhou(2023A04J1395)the GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)。
文摘Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.
基金supported by the National Natural Science Foundation of China (11475041, 11175036, 21373037)the Fundamental Research Funds for the Central Universities (DUT16QY49)~~
文摘CO2 selective reduction to CO with H2 over a CeO2-supported nano-Au catalyst at atmospheric pres- sure was investigated. A high CO2 conversion, approaching the thermodynamic equilibrium value, and nearly 100% CO selectivity were obtained. The surface formate intermediates generated during the reverse water-gas shift reaction at 400 ℃ were identified using in situ diffuse-reflectance infra- red Fourier-transform spectroscopy. The formate consumption to give CO and H20, determined using mass spectrometry, indicated that the reaction proceeded via an associative formate mecha- nism; this contributes to the high Au/CeO2 catalytic activity at low temperatures.
基金the Fundamental Research Funds for the Central Universities (2016ZCQ03)Beijing Excellent Young Scholar (2015000026833ZK11)+1 种基金the National Natural Science Foundation of China (51622801, 51572029, and 51308045)the Xu Guangqi grant
文摘Carbon dioxide(CO2) capture using magnesium oxide(MgO)-based adsorbents at intermediate temperatures has been regarded as a very prospective technology for their relatively high adsorption capacity,low cost, and wide availability. During the past few years, great effort has been devoted to the fabrication of molten salts-modified MgO-based adsorbents. The extraordinary progress achieved by coating with molten salts greatly promotes the COcapture capacity of MgO-based adsorbents. Therefore, we feel it necessary to deliver a timely review on this type of COcapturing materials, which will benefit the researchers working in both academic and industrial areas. In this work, we classified the molten saltsmodified MgO adsorbents into four categories:(1) homogenous molten salt-modified MgO adsorbents,(2) molten salt-modified double salts-based MgO adsorbents,(3) mixed molten salts-modified MgO adsorbents, and(4) molten salts-modified MgO-based mixed oxides adsorbents. This contribution critically reviews the recent developments in the synthetic method, adsorption capacity, reaction kinetics, promotion mechanism, operational conditions and regenerability of the molten salts-modified MgO COadsorbents. The challenges and prospects in this promising field of molten salts-modified MgO COadsorbents in real applications are also briefly mentioned.
文摘Electrochemical CO2 reduction is a promising strategy for the utilization of CO2 and intermittent excess electricity.Cu is the only single metal catalyst that can electrochemically convert CO2 into multicarbon products.However,Cu exhibits an unfavorable activity and selectivity for the generation of C2 products because of the insufficient amount of CO*provided for the C‐C coupling.Based on the strong CO2 adsorption and ultrafast reaction kinetics of CO*formation on Pd,an intimate CuPd(100)interface was designed to lower the intermediate reaction barriers and improve the efficiency of C2 product formation.Density functional theory(DFT)calculations showed that the CuPd(100)interface enhanced the CO2 adsorption and decreased the CO2*hydrogenation energy barrier,which was beneficial for the C‐C coupling.The potential‐determining step(PDS)barrier of CO2 to C2 products on the CuPd(100)interface was 0.61 eV,which was lower than that on Cu(100)(0.72 eV).Encouraged by the DFT calculation results,the CuPd(100)interface catalyst was prepared by a facile chemical solution method and characterized by transmission electron microscopy.CO2 temperature‐programmed desorption and gas sensor experiments further confirmed the enhancement of the CO2 adsorption and CO2*hydrogenation ability of the CuPd(100)interface catalyst.Specifically,the obtained CuPd(100)interface catalyst exhibited a C2 Faradaic efficiency of 50.3%±1.2%at‒1.4 VRHE in 0.1 M KHCO3,which was 2.1 times higher than that of the Cu catalyst(23.6%±1.5%).This study provides the basis for the rational design of Cu‐based electrocatalysts for the generation of multicarbon products by fine‐tuning the intermediate reaction barriers.
基金supported by grants from the National Natural Science Foundation of China (No. 81072001)the Natural Science Foundation of Hubei Province, China (No.2011CDB556)
文摘The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.
基金support of the National Natural Science Foundation of China(Nos.51972223,51932005 and 22109116)the Natural Science Foundation of Tianjin(No.20JCYBJC01550)+1 种基金the Fundamental Research Funds for the Cen-tral Universitiesthe Haihe Laboratory of Sustainable Chemical Transformations.
文摘Excess greenhouse gas emissions,primarily carbon dioxide(CO_(2)),have caused major environmental concerns worldwide.The electroreduction of CO_(2)into valuable chemicals using renewable energy is an ecofriendly approach to achieve carbon neutrality.In this regard,copper(Cu)has attracted considerable attention as the only known metallic catalyst available for converting CO_(2)to high-value multicarbon(C_(2+))products.The production of C_(2+)involves complicated C-C coupling steps and thus imposes high demands on intermediate regulation.In this review,we discuss multiple strategies for modulating intermediates to facilitate C_(2+)formation on Cu-based catalysts.Furthermore,several sophisticated in situ characterization techniques are outlined for elucidating the mechanism of C-C coupling.Lastly,the challenges and future directions of CO_(2)electroreduction to C_(2+)are envisioned.
文摘This exploratory study examines whether genre has an impact on syntactic complexity and holistic rating in EFL writing. Over 300 sample texts produced by intermediate learners were collected from a test and some regular after-class assignments for English writing courses. Each participant completed two writing tasks, one argumentative and the other narrative. Results show that genre type has a significant impact on L2 syntactic complexity. Genre effect is found stronger with timed writing tasks. L2 holistic ratings show correlation with syntactic complexity on the different measure(s) depending on genre type and planning conditions. Regression analyses reveal that for timed writing tasks, clausal density(clauses per sentence) is a reliable predictor for holistic assessment on intermediate EFL learners’ writing quality. It is found to account for 6% of the score variance for timed writing and 10% for timed argumentative writing. Genre is evidenced to be related to EFL writing holistic ratings. Closer examination indicates that while syntactic complexity is predictive of holistic writing scores for argumentative writing, it does not correlate with holistic scores for narrative writing. Other linguistic features rather than syntactic complexity may be accountable. Overall, the study lends support to genre effect in the relationship between syntactic complexity and L2 writing quality holistic rating.
文摘2-(4-Hydroxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-aldehyde 8,the key intermediate of sinaiticin 10,was synthesized in 6 step from caffeic acid 4 and 4- hydroxybenzsaldehyde 1.the coupling reaction is the key step.
文摘The photochemical[2+2]cycloaddition reaction of carbonyl compunds and alkenes was studied by photochemical induced dynamic nuclear spin polarization.
文摘This paper proposes the automatic generation of the middle frame and the middle frame automatic coloring method of two-dimensional animation process, users simply given starting key frames and end key frames, According to the algorithm proposed in this paper, the system can automatically generate all key frames that in the middle, and based on the starting key frame and termination of key frame color, the generated in the middle of the frame will been automatically chromatically. The experimental results show that, the automatic generation of intermediate frames and the middle frame automatic coloring method of two-dimensional animation is proposed in this paper production process can be successfully used in animation production, greatlyimproving the efficiency of animation.