The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.T...The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.The three-dimensional simulation method can study the hydrodynamic properties of the ICFB,and the performance of the fluidized bed is optimized.The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle.Then,through the cross-shaped baffle and funnel-shaped baffle placement,the fluidized bed reaches a coupled optimization.The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance of sewage treatment.The base gap crossshaped baffle can improve the hydraulic conditions of the fluidized bed and reduce the system energy consumption.The cross-shaped baffle and funnel-shaped baffle can perfect the performance of the reactor and effectively strengthen the treatment in the intense aerobic process of industrial sewage.展开更多
The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of gr...The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.展开更多
The internal flow of a droplet in the nonlinear extensional flow field will exhibit more than two internal circulations with the variation of nonlinear intensity(E).In this paper,the effect of positions and sizes of i...The internal flow of a droplet in the nonlinear extensional flow field will exhibit more than two internal circulations with the variation of nonlinear intensity(E).In this paper,the effect of positions and sizes of internal circulations on internal mass transfer rate of a single spherical droplet in a nonlinear extensional flow field is studied and compared with that in a linear extensional flow field.The simulation results show that when E≥0,there are two symmetrical internal circulations in the droplet,which is the same with that in a linear extensional flow.The limit value of mass transfer rate Sh is 15,which is equal to that in a linear extensional flow,no matter how large E is.When E≤-3/7,the number of internal flow circulation of a droplet increase to four and the transfer rate Sh increases.When E=-1,the maximum internal transfer rate Sh equals 30 which is twice of that in a linear extensional flow.The generation of new flow circulations in droplets and the circulation positions will enhance mass transfer when E≤-3/7,which provides a new idea for enhancing the internal mass transfer rate of droplets.展开更多
An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal e...An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal efficiency of suspended solid, chemical oxygen demand, total nitrogen and ammonia nitrogen were studied with the changeable hard real time design method, organic loading rate and nutrition elements. The average percentage reduction in chemical oxygen demand achieved 90%. The total nitrogen and ammonia nitrogen were also reduced by 90% and 95%, respectively. The results indicate that the outlet of ICMBR meets the requirements of the environment landscape recycling use.展开更多
Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this st...Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this study,the hydrodynamics in commercial-scale internally circulating fluidized beds(ICFBs)with central downcomers having different outlet structures was investigated using computational fluid dynamics simulations with an energy minimization multi-scale drag model.The predicted results closely agreed with experimental data.Results showed that in an ICFB with a downcomer outlet directly open to the bed(model A),nearly 12.7%to 5.4%of the gas in the draft tube bypasses into the downcomer.In the ICFB models B and C with a conic baffle below the downcomer,the gas bypass is significantly weakened or even eliminated when the diameter of the conic baffle is 1.1 times that of the downcomer(model C).In addition,the solids circulation mass flux in ICFBs increased by about 62.5%,from 126.8 kg/(m2 s)in model A to 206 kg/(m2 s)in model C.展开更多
To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser ...To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser y^R, and from riser to down-comer yRD) were experimentally studied. The effects of gas velocities in the riser and in the down-comer (UR and UD), orifice diameter in the draft tube (dor), and draft tube height (HR) were investigated. Experimental results showed that increase of gas velocities led to increase in Gs and yDR, and slight decrease in yeD. Larger orifice diameter on the draft tube led to higher 8sD, Gs and yDR, but had insignificant influence on YRD. with increasing draft tube height, both Gs and YDR first increased and then decreased, while yRD first decreased and then increased. Proposed correlations for predicting the hydrodynamic parameters agreed reasonably well with experimental values.展开更多
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visuali...The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visualized.The experimental results affirm that there exists the internal circulation inside the droplet and it could enhance the convective mass transfer.The stagnant center of vortices is also observed.The extraction fraction could reach 40%80%.In order to establish the mass transfer model,different flow rates of the dispersed and continuous phase are adopted.The high continuous phase flow rate and low dispersed phase flow rate are both beneficial to enhance mass transfer by expediting the internal circulation.A modified mass transfer model is found to calculate the extraction fraction.A good agreement between the model and experiment in various conditions demonstrates that the mass transfer model in this work is reliable and feasible.展开更多
Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in...Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in bubbling bed. There is a flowing zone with high velocity in the heat exchange zone.The heat transfer coefficients strongly depend on the fluidized velocity in the flowing zone. The heatexchange process and suitable bed temperature can be controlled according to this feature. Based onthe results of the experiments, a formulation for heat transfer has been developed.展开更多
With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,wi...With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,with daily measurements that span from 1993 to 2018,allowing for the precise identification and tracking of individual eddies.In the current study,in addition to the internal circulation and migration of eddies,a new aspect in eddy kinematics is revealed and investigated for the first time:shape-based overall eddy rotation(SOER),based on the intrinsic elliptical shape of eddies identified from a high-resolution SLA dataset.We found that eddies can maintain an elliptical shape and a slow and stable SOER during their migration process.The SOER speed was observed to be negatively correlated to eddy lifetime,and exhibited a dependence on latitude,decreasing from low-and high-to mid-latitudes.The SOER direction tended to be consistent with the direction of internal circulation,particularly for long-lived eddies.In addition,we identified a negative relationship between internal circulation speed and SOER speed while the migration speed was positively related to SOER speed.These findings further expand and improve eddy kinematics,which is of great significance for the future study of eddy dynamics.展开更多
China is the world's largest cotton producer and consumer and its domestic cotton demand and supply have a great influence on the world market. This paper firstly gives a discussion on Chinese cotton market, especial...China is the world's largest cotton producer and consumer and its domestic cotton demand and supply have a great influence on the world market. This paper firstly gives a discussion on Chinese cotton market, especially from a viewpoint of history to study domestic market price fluctuation. The cotton market history from E R. China's setting up to present has been divided into four stages and characterized as different agricultural policies applications and economic periodicities. Concluding from the history, artificial influences may be the most important reason of market inequilibrium, up to now, market and artificial interruption, are also the key problem. Then it takes domestic cotton demand as a study object, trying to find what will be a statistic significant cotton demand in national level and it's underneath demand frame. Through a seres of analysis on the demand frame, problems have been clearly displayed, an open microeconomic circulation supports our study and six variables had been described by statistics. Therefore, we can analyze the cases of real cotton demand that includes supply and demand reactions in China with experience and estimations. Otherwise, international cotton market is greatly interacted with Chinese domestic market more and more today. Some necessary analysis, such as international cotton supply and demand, Chinese cotton stock policy and world price long run tendency, are very important factors for Chinese cotton development. Those may concern Chinese access to WTO, cotton trade quota and tariff, welfare comparison, etc., all have been discussed in the paper.展开更多
In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which ...In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.展开更多
In 2020,China proposed a new development paradigm centered on domestic circulation with a"dual circulation"model in which domestic circulation and international circulation promote each other.This new paradi...In 2020,China proposed a new development paradigm centered on domestic circulation with a"dual circulation"model in which domestic circulation and international circulation promote each other.This new paradigm reflects a clear understanding of China's development trend that saw its share of exports in the GDP declining steadily since 2006.However,the new paradigm does not necessarily mean that China should change its past policy of fully utilizing domestic and international markets and resources in economic development.Because of large economies of scale in modern manufacturing sector,China should continue to make full use of international markets.展开更多
文摘The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.The three-dimensional simulation method can study the hydrodynamic properties of the ICFB,and the performance of the fluidized bed is optimized.The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle.Then,through the cross-shaped baffle and funnel-shaped baffle placement,the fluidized bed reaches a coupled optimization.The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance of sewage treatment.The base gap crossshaped baffle can improve the hydraulic conditions of the fluidized bed and reduce the system energy consumption.The cross-shaped baffle and funnel-shaped baffle can perfect the performance of the reactor and effectively strengthen the treatment in the intense aerobic process of industrial sewage.
文摘The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.
基金supported by the National Key Research and Development Program of China(2021YFC2902502)the National Natural Science Foundation of China(22078320,22035007)+4 种基金the NSFC-EU project(31961133018)the Shandong Provincial Key Research and Development Program(2022CXGC020106)the Shandong Key Research and Development Program(International Cooperation Office)(2019GHZ018)the Shandong Province Postdoctoral Innovative Talents Support Plan(SDBX2020018)the External Cooperation Program of BIC,Chinese Academy of Sciences(122111KYSB20190032)。
文摘The internal flow of a droplet in the nonlinear extensional flow field will exhibit more than two internal circulations with the variation of nonlinear intensity(E).In this paper,the effect of positions and sizes of internal circulations on internal mass transfer rate of a single spherical droplet in a nonlinear extensional flow field is studied and compared with that in a linear extensional flow field.The simulation results show that when E≥0,there are two symmetrical internal circulations in the droplet,which is the same with that in a linear extensional flow.The limit value of mass transfer rate Sh is 15,which is equal to that in a linear extensional flow,no matter how large E is.When E≤-3/7,the number of internal flow circulation of a droplet increase to four and the transfer rate Sh increases.When E=-1,the maximum internal transfer rate Sh equals 30 which is twice of that in a linear extensional flow.The generation of new flow circulations in droplets and the circulation positions will enhance mass transfer when E≤-3/7,which provides a new idea for enhancing the internal mass transfer rate of droplets.
基金Supported by Liaoning Foundation for Science and Technology Cooperation Between Government and University.
文摘An innovative internal circulation membrane bioreactor(ICMBR)treating traditional opaque beer brewery wastewater was introduced. Beer wastewater from Tianjin Huarun Brewhouse was taken as the influent. The removal efficiency of suspended solid, chemical oxygen demand, total nitrogen and ammonia nitrogen were studied with the changeable hard real time design method, organic loading rate and nutrition elements. The average percentage reduction in chemical oxygen demand achieved 90%. The total nitrogen and ammonia nitrogen were also reduced by 90% and 95%, respectively. The results indicate that the outlet of ICMBR meets the requirements of the environment landscape recycling use.
文摘Standpipes,or downcomers,are commonly used in fluidized beds to transport particles.The outlet structure of the downcomer greatly affects the performance of flow from it and even overall reactor performance.In this study,the hydrodynamics in commercial-scale internally circulating fluidized beds(ICFBs)with central downcomers having different outlet structures was investigated using computational fluid dynamics simulations with an energy minimization multi-scale drag model.The predicted results closely agreed with experimental data.Results showed that in an ICFB with a downcomer outlet directly open to the bed(model A),nearly 12.7%to 5.4%of the gas in the draft tube bypasses into the downcomer.In the ICFB models B and C with a conic baffle below the downcomer,the gas bypass is significantly weakened or even eliminated when the diameter of the conic baffle is 1.1 times that of the downcomer(model C).In addition,the solids circulation mass flux in ICFBs increased by about 62.5%,from 126.8 kg/(m2 s)in model A to 206 kg/(m2 s)in model C.
基金the financial support by the Beijing New Star Project on Science&Technology of China under grant no.2009B35
文摘To better understand the hydrodynamic behavior of an internally circulating fluidized bed, solids holdup in the down-comer (Eso), solids circulation rate (Gs) and gas bypassing fraction (from down-comer to riser y^R, and from riser to down-comer yRD) were experimentally studied. The effects of gas velocities in the riser and in the down-comer (UR and UD), orifice diameter in the draft tube (dor), and draft tube height (HR) were investigated. Experimental results showed that increase of gas velocities led to increase in Gs and yDR, and slight decrease in yeD. Larger orifice diameter on the draft tube led to higher 8sD, Gs and yDR, but had insignificant influence on YRD. with increasing draft tube height, both Gs and YDR first increased and then decreased, while yRD first decreased and then increased. Proposed correlations for predicting the hydrodynamic parameters agreed reasonably well with experimental values.
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.
基金the National Natural Science Foundation of China(21991100,21991101)for this work.
文摘The mass transfer of Rhodamine 6G from the droplet to the continuous phase in a coaxial micro-channel is studied using micro-LIF(Laser-Induced Fluorescence).The mass distribution inside droplet is measured and visualized.The experimental results affirm that there exists the internal circulation inside the droplet and it could enhance the convective mass transfer.The stagnant center of vortices is also observed.The extraction fraction could reach 40%80%.In order to establish the mass transfer model,different flow rates of the dispersed and continuous phase are adopted.The high continuous phase flow rate and low dispersed phase flow rate are both beneficial to enhance mass transfer by expediting the internal circulation.A modified mass transfer model is found to calculate the extraction fraction.A good agreement between the model and experiment in various conditions demonstrates that the mass transfer model in this work is reliable and feasible.
文摘Heat transfer coefficients for horizontally immersed tubes have been studied in a model of ICFB (Internally Circulating Fluidized Bed). The characteristics in ICFB were found to be significantly differentfrom those in bubbling bed. There is a flowing zone with high velocity in the heat exchange zone.The heat transfer coefficients strongly depend on the fluidized velocity in the flowing zone. The heatexchange process and suitable bed temperature can be controlled according to this feature. Based onthe results of the experiments, a formulation for heat transfer has been developed.
基金The National Natural Science Foundation of China under contract No.42030406the Wenhai Program of the S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2021WHZZB1501the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2022QNLM050301-1。
文摘With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,with daily measurements that span from 1993 to 2018,allowing for the precise identification and tracking of individual eddies.In the current study,in addition to the internal circulation and migration of eddies,a new aspect in eddy kinematics is revealed and investigated for the first time:shape-based overall eddy rotation(SOER),based on the intrinsic elliptical shape of eddies identified from a high-resolution SLA dataset.We found that eddies can maintain an elliptical shape and a slow and stable SOER during their migration process.The SOER speed was observed to be negatively correlated to eddy lifetime,and exhibited a dependence on latitude,decreasing from low-and high-to mid-latitudes.The SOER direction tended to be consistent with the direction of internal circulation,particularly for long-lived eddies.In addition,we identified a negative relationship between internal circulation speed and SOER speed while the migration speed was positively related to SOER speed.These findings further expand and improve eddy kinematics,which is of great significance for the future study of eddy dynamics.
文摘China is the world's largest cotton producer and consumer and its domestic cotton demand and supply have a great influence on the world market. This paper firstly gives a discussion on Chinese cotton market, especially from a viewpoint of history to study domestic market price fluctuation. The cotton market history from E R. China's setting up to present has been divided into four stages and characterized as different agricultural policies applications and economic periodicities. Concluding from the history, artificial influences may be the most important reason of market inequilibrium, up to now, market and artificial interruption, are also the key problem. Then it takes domestic cotton demand as a study object, trying to find what will be a statistic significant cotton demand in national level and it's underneath demand frame. Through a seres of analysis on the demand frame, problems have been clearly displayed, an open microeconomic circulation supports our study and six variables had been described by statistics. Therefore, we can analyze the cases of real cotton demand that includes supply and demand reactions in China with experience and estimations. Otherwise, international cotton market is greatly interacted with Chinese domestic market more and more today. Some necessary analysis, such as international cotton supply and demand, Chinese cotton stock policy and world price long run tendency, are very important factors for Chinese cotton development. Those may concern Chinese access to WTO, cotton trade quota and tariff, welfare comparison, etc., all have been discussed in the paper.
基金supported by the National Natural Science Foundation of China(Nos.21506076,51678279 and 51508230)the National Science and Technological Support of China(No.2014BAC25B01)
文摘In this study, a full-scale internal circulation(IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste(MSW)incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates(OLR) of 21.06–25.16 kg chemical oxygen demand(COD)/(m3? day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50 m3/kg COD.The formation of extracellular polymeric substances(EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7 mg/g Volatile Suspended Solid(VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from-26.2 m V and 30.35% to-10.6 m V and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy(3 D-EEM) and Fourier transform infrared spectroscopy(FT-IR)analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.
文摘In 2020,China proposed a new development paradigm centered on domestic circulation with a"dual circulation"model in which domestic circulation and international circulation promote each other.This new paradigm reflects a clear understanding of China's development trend that saw its share of exports in the GDP declining steadily since 2006.However,the new paradigm does not necessarily mean that China should change its past policy of fully utilizing domestic and international markets and resources in economic development.Because of large economies of scale in modern manufacturing sector,China should continue to make full use of international markets.