期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
1
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research Steel-concrete composite structure Cable-stayed bridge internal force distribution
下载PDF
Coupling effects of morphology and inner pore distribution on the mechanical response of calcareous sand particles
2
作者 Xin Li Yaru Lv +3 位作者 Yuchen Su Kunhang Zou Yuan Wang Wenxiong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1565-1579,共15页
Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical prope... Calcareous sand is typically known as a problematic marine sediment because of its diverse morphology and complex inner pore structure.However,the coupling effects of morphology and inner pores on the mechanical properties of calcareous sand particles have rarely been investigated and understood.In this study,apparent contours and internal pore distributions of calcareous sand particles were obtained by three-dimensional(3D)scanning imaging and X-ray micro-computed tomography(X-mCT),respectively.It was revealed that calcareous sand particles with different outer morphologies have different porosities and inner pore distributions because of their original sources and particle transport processes.In addition,a total of 120 photo-related compression tests and 4923D discrete element simulations of four specific shaped particles,i.e.bulky,angular,dendritic and flaky,with variations in the inner pore distribution were conducted.The macroscopic particle strength and Weibull modulus obtained from the physical tests are not positively correlated with the porosity or regularity in shape,indicating the existence of coupling effect of particle shape and pore distribution.The shape effect on the particle strength first increases with the porosity and then decreases.The particle crushing of relatively regular particles is governed by the porosity,but that of extremely irregular particles is governed by the particle shape.The particle strength increases with the uniformity of the pore distribution.Particle fragmentation is mainly dependant on tensile bond strength,and the degree of tensile failure is considerably impacted by the particle shape but limited by the pore distribution. 展开更多
关键词 Calcareous sand Coupling effects Outer shape internal pore distribution Particle strength Failure mode
下载PDF
Analysis model of internal residence time distribution for fluid flow in a multi-strand continuous casting tundish
3
作者 Qiang Yue Yue Li +2 位作者 Zi-ming Wang Ben-chen Sun Xiu-zhen Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2186-2195,共10页
The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external... The external residence time distribution(RTD)curve is extensively used to characterise fluid flow within the single-strand continuous casting tundish.Dead volume fraction determination typically relies on the external RTD curve to reveal macroscopic fluid flow behaviour.Based on the external RTD to effectively assess dead volume fractions and other fluid characteristics under conditions of internal non-uniform flow,an internal RTD was introduced.In a smooth pipe under laminar flow conditions,the dead region occupies 25%of the total volume,which is defined as the space between the pipe wall and a radius of 0.866 R0(where R0 is the radius of pipe).Under turbulent flow conditions,the dead region only occupies 0.38%of the reactor’s internal volume,spanning from the pipe wall to a radius of 0.00189 R0.The results obtained using the external RTD method are consistent with the theoretical analysis.Experimental trials involving water were conducted to examine the flow of molten steel within a five-strand tundish.Subsequently,an analysis approach employing internal RTD was employed to evaluate fluid mixing within a multi-flow continuous casting tundish.Using the internal RTD method,the analysis revealed that the whole dead zone volume fraction of the intermediate package decreased from 26.9%to 18.9%after the addition of the flow control device.The dead volume fraction can be accurately depicted by utilising the internal mean RTD function.The association between the internal RTD function and the external average RTD can be effectively employed to scrutinise the response curve of the tracer within a system exhibiting uneven flow distribution. 展开更多
关键词 TUNDISH internal residence time distribution Dead volume Critical velocity Mathematical modelling
原文传递
An overview on the distributed internal model approach and its applications
4
作者 Youfeng Su He Cai Jie Huang 《Control Theory and Technology》 EI CSCD 2024年第3期345-359,共15页
The cooperative output regulation problem has been studied by two approaches:the distributed observer(DO)approach and the distributed internal model(DIM)approach,respectively.Each of these two approaches has its own m... The cooperative output regulation problem has been studied by two approaches:the distributed observer(DO)approach and the distributed internal model(DIM)approach,respectively.Each of these two approaches has its own merits and weaknesses.Recently,we presented an overview on the cooperative output regulation problem by the DO approach.This paper further surveys the cooperative output regulation problem by the DIM approach.We first summarize the constructions and the roles of two different versions of the internal models:the distributed p-copy internal model and the distributed canonical internal model.Then,we describe an integrated framework that combines the DO approach and the DIM approach.Extensions and variants of the DIM and their applications will also be highlighted. 展开更多
关键词 Cooperative output regulation Distributed p-copy internal model Distributed canonical internal model Integrated approach
原文传递
High damping in Fe-Ga-La alloys:Phenomenological model for magneto-mechanical hysteresis damping and experiment
5
作者 Meng Sun Anatoly Balagurov +4 位作者 Ivan Bobrikov Xianping Wang Wen Wen Igor S.Golovin Qianfeng Fang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期69-80,共12页
Ferromagnetic high damping(FHA)alloys with a wide temperature range from-150℃to 300℃have unique application value in extreme environments.In the present work,the damping behaviors of Fe-21 Ga-xLa(x=0.12 wt.%,0.24 wt... Ferromagnetic high damping(FHA)alloys with a wide temperature range from-150℃to 300℃have unique application value in extreme environments.In the present work,the damping behaviors of Fe-21 Ga-xLa(x=0.12 wt.%,0.24 wt.%,0.47 wt.%,1.18 wt.%,and 2.33 wt.%La)alloys have been studied in detail,and a new phenomenological model has been proposed.With the increase of La content,the Laves phase(LaGa_(2))in the matrix increases gradually,and the resistance opposing the domain movement increases as well.Combined with the results of synchrotron radiation X-ray diffraction,neutron diffraction,and magnetic domain observation,the resistance mainly comes from three parts:the average stress related to the lattice distortion of the matrix,the average stress related to the increasing area energy of domain walls(DWs),and the ave rage stress related to the increasing demagnetization energy induced by the Laves phase.Different from the traditional method of reducing internal stress through annealing to improve the damping capacity,the proper internal stress barriers are necessary to Barkhausen jumps to dissipate energy.Therefore,proper doping to balance resistance and mobility of DWs is a reliable way to improve damping capacity.Meanwhile,for Fe-Al and Fe-Cr based Alloys,the new model also has a good fitting effect.This study provides a theoretical and experimental reference for improving the functional properties of ferromagnetic alloys. 展开更多
关键词 Magneto-mechanical hysteresis damping Laves phase(LaGa_(2)) internal stress distribution Neutron-diffraction patterns Domain walls
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部