Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was...Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.展开更多
The equations governing wind-induced internal pressure responses for a two-compartment building with a dominant opening and background porosity were derived.The unsteady form of the Bernoulli equation,the law of mass ...The equations governing wind-induced internal pressure responses for a two-compartment building with a dominant opening and background porosity were derived.The unsteady form of the Bernoulli equation,the law of mass conservation,and adiabatic equation were used for the derivation.The precision of the governing equations was verified by a wind tunnel test on a rigid model of a low-rise building.The results show that the governing equations can effectively analyze the wind-induced internal pressure responses.The internal pressure responses in both compartments are suppressed due to the additional damping provided by background porosity.The responses of internal pressure in both compartments,especially in the compartment without an external opening,decrease with increased lumped leakage area.展开更多
A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The...A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.展开更多
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p...A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines.展开更多
The mechanical effects of dilute liquid inclusions on the solid-liquid composite are explored,based on an analytical circular inclusion model incorporating the internal pressure change of the liquid and the surface te...The mechanical effects of dilute liquid inclusions on the solid-liquid composite are explored,based on an analytical circular inclusion model incorporating the internal pressure change of the liquid and the surface tension of the interface.Several simple explicit dependences of the stress field and effective stiffness on the bulk modulus and the size of the liquid,the surface tension,and Poisson’s ratio of the matrix are derived.The results show that the stresses in the matrix are reduced,and the stiffness of the solid-liquid composite is enhanced with the consideration of either the surface tension or the internal pressure change.Particularly,the effective Young’s modulus predicted by the present model for either soft or stiff matrices agrees well with the known experimental data.In addition,according to the theoretical results,it is possible to stiffen a soft solid by pressured gas with the presence of the surface tension of the solid-gas interface.展开更多
The internal pressure of the process was studied theoretically and experimentally. The external load character and internal stress character of tube hydroforming were discussed first. Then, according to the characters...The internal pressure of the process was studied theoretically and experimentally. The external load character and internal stress character of tube hydroforming were discussed first. Then, according to the characters, the function and classification of internal pressure were presented in general. Base on the stress analysis, its effect on the yield criterion and calculation formula were also researched and derived. To verify the correction of the theoretical analysis and derived formula, experiments with different internal pressures were carried out and the result was compared and discussed. It demonstrates that internal pressure plays an important role in tube hydroforming and theory and formula discussed and derived by this paper are feasible in practice.展开更多
To analyze the effect of internal pressure on the connection strength of hydraulically expanded joints,a hydraulic expanding and push-out process of a joint of tube to sleeve was simulated by using FEM and validated b...To analyze the effect of internal pressure on the connection strength of hydraulically expanded joints,a hydraulic expanding and push-out process of a joint of tube to sleeve was simulated by using FEM and validated by experiments at various internal pressure values.The stress and residual stress in the joined pair during the joining process illustrates that the contact pressure on the interface is not uniform along the longitudinal direction.The research reveals that if the sleeve does not experience any plastic deformation,the connection strength increases with the internal pressure linearly.For sleeve material with yield point elongation,if the sleeve experiences some degree of plastic deformation,there is an internal pressure interval in which the connection strength decreases slightly as internal pressure increases.Therefore,the internal pressure should be controlled depending on the deformation of the sleeve,but not as high as possible.The simulated results are in good agreement with those from experiments.展开更多
The design operating conditions of rubber dams were analyzed,and it is found that the operating conditions are similar to the actual operating conditions of changes in the internal pressure ratio of a specific rubber ...The design operating conditions of rubber dams were analyzed,and it is found that the operating conditions are similar to the actual operating conditions of changes in the internal pressure ratio of a specific rubber dam bag in the process of filling and draining. Based on this,the linear relationship curve between the internal pressure head H0 and the real-time dam height H and its approximate analytical formula can be obtained,which can be used as a supplement and correction method for the measurement method of real-time dam height during rubber dam operation,and provides reference for rubber dam project managers.展开更多
Introduction Tortuous veins are often seen in the retina,cerebrum,and human legs. Venous tortuosity may affect blood flow and the wall remodeling process,both of which are associated with venous diseases. It has been ...Introduction Tortuous veins are often seen in the retina,cerebrum,and human legs. Venous tortuosity may affect blood flow and the wall remodeling process,both of which are associated with venous diseases. It has been shown that tortuous or vari-展开更多
In this paper. from asymptotic equations of thicking shell obtained on the basis of the equations of three dimensional elastic mechanics using geometric small parameter we find the solutions of the stresses and the de...In this paper. from asymptotic equations of thicking shell obtained on the basis of the equations of three dimensional elastic mechanics using geometric small parameter we find the solutions of the stresses and the deformations of thick ring shell submitted to the action of internal pressure q.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Injection molding is a complicated production technique for the manufacturing of polymer products. During injection molding, it's hard to predict molding quality; the injection molding parameters, such as mold temper...Injection molding is a complicated production technique for the manufacturing of polymer products. During injection molding, it's hard to predict molding quality; the injection molding parameters, such as mold temperature, melt temperature, packing pressure and packing time, affect the final properties of product. The cavity pressure is a significant key factor. Residual stress and injection molding weight are significantly affected by the cavity pressure. This study created an approach to predict weight of injection-molded by real-time online cavity pressure monitoring. This study uses a 6-inch with thickness lmm light guide panel and the largest area beneath the pressure curve of time as well as the maximum pressure as its characteristic. The upper and lower limits of the control are set to +2 standard deviations, and GUI (Graphical User Interface)-based LabVIEW software is used to perform calculation and analysis of the pressure curve. The results of the experiment show that the online internal cavity pressure monitoring system can effectively monitor the quality of the molded products. In 500 injection molding cycle tests, its error rate was less than 8%, whereas the deviation in mass of the molded products selected through the system's filtering process was successfully controlled to be within ±4%.展开更多
In tube hydroforming with axial feeding,under the effect of coupled internal pressure and axial stress,wrinkles often occur and affect the forming results.Wrinkling behavior of an AZ31B magnesium alloy tube was experi...In tube hydroforming with axial feeding,under the effect of coupled internal pressure and axial stress,wrinkles often occur and affect the forming results.Wrinkling behavior of an AZ31B magnesium alloy tube was experimentally investigated with different loading paths at different temperatures.Features of wrinkles,including shape,radius and width,were acquired from the experiments,as well as the thickness distribution.Numerical simulations were carried out to reveal the stress state during warm hydroforming,and then the strain history of material at the top and bottom of the wrinkles were analyzed according to the stress tracks and yielding ellipse.Finally,effects of loading paths on expansion ratio limit of warm hydroforming were analyzed.It is verified that at a certain temperature,expansion ratio limit can be increased obviously by applying a proper loading path and realizing enough axial feeding.展开更多
To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the suffic...To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.展开更多
The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distri...The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.展开更多
The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise hom...The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that.展开更多
Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The ...Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The effect of the interface between the segmental and inner linings on the bearing capacity has been widely investigated;however,the effect of soil on the internal water pressure bearing capacity has not been emphasized enough.Therefore,in this study,model tests and an analytical solution are presented to elucidate the effect of soil on the internal water pressure bearing capacity.First,model tests are conducted on double-lining models under sandy soil and highly weathered argillaceous siltstone conditions.The internal force and earth pressure under these different soil conditions are then compared to reveal the contribution of soil to the internal water pressure bearing capacity.Following this,an analytical solution,considering the soil–double-lining interaction,is proposed to further investigate the contribution of the soil.The analytical solution is verified with model tests.The analytical solution is in good agreement with the model test results and can be used to evaluate the mechanical behavior of the double-lining and soil contribution.The effect of soil on the bearing capacity is found to be related with the elastic modulus of the soil and the deformation state of the double-lining.Before the double-lining cracks,the sandy soil contributes 3.7%of the internal water pressure but the contribution of the soil rises to 10.4%when it is the highly weathered argillaceous siltstone.After the double-lining cracks,the soil plays an important role in bearing internal water pressure.The soil contributions of sandy soil and highly weathered argillaceous siltstones are 10.5%and 27.8%,respectively.The effect of soil should be considered in tunnel design with the internal water pressure.展开更多
A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studi...A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.展开更多
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project (No. 50578144) supported by the National Natural ScienceFoundation of China
文摘Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.
基金Project(90715040) supported by the Major Research Program of the National Natural Science Foundation of ChinaProject(50878159) supported by the General Program of the National Natural Science Foundation of China
文摘The equations governing wind-induced internal pressure responses for a two-compartment building with a dominant opening and background porosity were derived.The unsteady form of the Bernoulli equation,the law of mass conservation,and adiabatic equation were used for the derivation.The precision of the governing equations was verified by a wind tunnel test on a rigid model of a low-rise building.The results show that the governing equations can effectively analyze the wind-induced internal pressure responses.The internal pressure responses in both compartments are suppressed due to the additional damping provided by background porosity.The responses of internal pressure in both compartments,especially in the compartment without an external opening,decrease with increased lumped leakage area.
基金Project (No. 50378085) supported by the National Natural ScienceFoundation of China
文摘A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.
文摘A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines.
文摘The mechanical effects of dilute liquid inclusions on the solid-liquid composite are explored,based on an analytical circular inclusion model incorporating the internal pressure change of the liquid and the surface tension of the interface.Several simple explicit dependences of the stress field and effective stiffness on the bulk modulus and the size of the liquid,the surface tension,and Poisson’s ratio of the matrix are derived.The results show that the stresses in the matrix are reduced,and the stiffness of the solid-liquid composite is enhanced with the consideration of either the surface tension or the internal pressure change.Particularly,the effective Young’s modulus predicted by the present model for either soft or stiff matrices agrees well with the known experimental data.In addition,according to the theoretical results,it is possible to stiffen a soft solid by pressured gas with the presence of the surface tension of the solid-gas interface.
基金This work is supported by the National Natural Science Foundation under grant No.59975021,which was gratefully acknowledged.At the same time,the author also thanks Prof.P.Zeng of Tsinghua University for his kind assistance which is also indispensble in the accomplishment of this paper.
文摘The internal pressure of the process was studied theoretically and experimentally. The external load character and internal stress character of tube hydroforming were discussed first. Then, according to the characters, the function and classification of internal pressure were presented in general. Base on the stress analysis, its effect on the yield criterion and calculation formula were also researched and derived. To verify the correction of the theoretical analysis and derived formula, experiments with different internal pressures were carried out and the result was compared and discussed. It demonstrates that internal pressure plays an important role in tube hydroforming and theory and formula discussed and derived by this paper are feasible in practice.
文摘To analyze the effect of internal pressure on the connection strength of hydraulically expanded joints,a hydraulic expanding and push-out process of a joint of tube to sleeve was simulated by using FEM and validated by experiments at various internal pressure values.The stress and residual stress in the joined pair during the joining process illustrates that the contact pressure on the interface is not uniform along the longitudinal direction.The research reveals that if the sleeve does not experience any plastic deformation,the connection strength increases with the internal pressure linearly.For sleeve material with yield point elongation,if the sleeve experiences some degree of plastic deformation,there is an internal pressure interval in which the connection strength decreases slightly as internal pressure increases.Therefore,the internal pressure should be controlled depending on the deformation of the sleeve,but not as high as possible.The simulated results are in good agreement with those from experiments.
文摘The design operating conditions of rubber dams were analyzed,and it is found that the operating conditions are similar to the actual operating conditions of changes in the internal pressure ratio of a specific rubber dam bag in the process of filling and draining. Based on this,the linear relationship curve between the internal pressure head H0 and the real-time dam height H and its approximate analytical formula can be obtained,which can be used as a supplement and correction method for the measurement method of real-time dam height during rubber dam operation,and provides reference for rubber dam project managers.
基金supported by a CAREER award (0644646) from the National Science Foundationa research grant (R01HL095852)+1 种基金a MBRS-RISE fellowship (GM60655) from the National Institute of Health,USAa research grant (10928206) from the National Natural Science Foundation of China
文摘Introduction Tortuous veins are often seen in the retina,cerebrum,and human legs. Venous tortuosity may affect blood flow and the wall remodeling process,both of which are associated with venous diseases. It has been shown that tortuous or vari-
文摘In this paper. from asymptotic equations of thicking shell obtained on the basis of the equations of three dimensional elastic mechanics using geometric small parameter we find the solutions of the stresses and the deformations of thick ring shell submitted to the action of internal pressure q.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
文摘Injection molding is a complicated production technique for the manufacturing of polymer products. During injection molding, it's hard to predict molding quality; the injection molding parameters, such as mold temperature, melt temperature, packing pressure and packing time, affect the final properties of product. The cavity pressure is a significant key factor. Residual stress and injection molding weight are significantly affected by the cavity pressure. This study created an approach to predict weight of injection-molded by real-time online cavity pressure monitoring. This study uses a 6-inch with thickness lmm light guide panel and the largest area beneath the pressure curve of time as well as the maximum pressure as its characteristic. The upper and lower limits of the control are set to +2 standard deviations, and GUI (Graphical User Interface)-based LabVIEW software is used to perform calculation and analysis of the pressure curve. The results of the experiment show that the online internal cavity pressure monitoring system can effectively monitor the quality of the molded products. In 500 injection molding cycle tests, its error rate was less than 8%, whereas the deviation in mass of the molded products selected through the system's filtering process was successfully controlled to be within ±4%.
基金Project(NCET-07-0237)supported by the Program for New Century Excellent Talents in University,China
文摘In tube hydroforming with axial feeding,under the effect of coupled internal pressure and axial stress,wrinkles often occur and affect the forming results.Wrinkling behavior of an AZ31B magnesium alloy tube was experimentally investigated with different loading paths at different temperatures.Features of wrinkles,including shape,radius and width,were acquired from the experiments,as well as the thickness distribution.Numerical simulations were carried out to reveal the stress state during warm hydroforming,and then the strain history of material at the top and bottom of the wrinkles were analyzed according to the stress tracks and yielding ellipse.Finally,effects of loading paths on expansion ratio limit of warm hydroforming were analyzed.It is verified that at a certain temperature,expansion ratio limit can be increased obviously by applying a proper loading path and realizing enough axial feeding.
基金This project was supported by the Fundamental Research Funds for the Central Universities(WUT:2018IB001)the Fundamental Research Funds for the Central Universities(WUT:2019III130CG).
文摘To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.
基金Funded by the National Natural Science Foundation of China(50525516)
文摘The hydroforming experiment of aluminum tubular part with rectangular section was carried out to investigate influence of axial feeding on thickness distribution and calibration pressure of the corner.Thickness distribution and relation between corner radius and internal pressure were analyzed.The influence of lubricant was discussed.Microstructure and hardness of different region were observed.It is shown that thickness reduction in the transition region between the corner and center region is the biggest.Friction condition has influence both on the thickness distribution and calibration pressure of the corner.As the increase of the axial feeding,the calibration pressure is decreased.There is only little change for the microstructure,but the hardness is increased by 23.3% for the transition region.
文摘The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that.
基金the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-0700-07-456 E00051)the National Natural Science Foundation of China(Nos.51978517,52090082,and 52108381)the Shanghai Science and Technology Committee Program(Nos.21DZ1200601 and 20DZ1201404)。
文摘Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The effect of the interface between the segmental and inner linings on the bearing capacity has been widely investigated;however,the effect of soil on the internal water pressure bearing capacity has not been emphasized enough.Therefore,in this study,model tests and an analytical solution are presented to elucidate the effect of soil on the internal water pressure bearing capacity.First,model tests are conducted on double-lining models under sandy soil and highly weathered argillaceous siltstone conditions.The internal force and earth pressure under these different soil conditions are then compared to reveal the contribution of soil to the internal water pressure bearing capacity.Following this,an analytical solution,considering the soil–double-lining interaction,is proposed to further investigate the contribution of the soil.The analytical solution is verified with model tests.The analytical solution is in good agreement with the model test results and can be used to evaluate the mechanical behavior of the double-lining and soil contribution.The effect of soil on the bearing capacity is found to be related with the elastic modulus of the soil and the deformation state of the double-lining.Before the double-lining cracks,the sandy soil contributes 3.7%of the internal water pressure but the contribution of the soil rises to 10.4%when it is the highly weathered argillaceous siltstone.After the double-lining cracks,the soil plays an important role in bearing internal water pressure.The soil contributions of sandy soil and highly weathered argillaceous siltstones are 10.5%and 27.8%,respectively.The effect of soil should be considered in tunnel design with the internal water pressure.
基金supported by the Fun⁃damental Scientific Research Business Expenses of Central Universities(No.NJ2020024).
文摘A new fluid bag buffer mechanism,which can provide large axial stiffness under the small displacement,is designed.The dynamic change laws of the mechanism stiffness and the internal pressure of the fluid bag are studied when it is subjected to impact load.According to the protection performance for the flexible joint and the pressure change in the fluid bag during the impact process,the sensitivity of the geometric parameters of the fluid bag to the axial stiffness is analyzed by using the orthogonal experimental method,and the optimal parameter combination of the geometric parameters of the fluid bag under impact is obtained,leading to the displacement of the inner shell reduce by 41.4%.The results show that the internal pressure of the fluid bag is a rising process of oscillation and fluctuation.The sensitivity of the geometric parameters of the fluid bag to the displacement of the inner shell from high to low is as follows:Height H,radius r,wall thickness t,chamfer A.The correlation between the geometric parameters of the fluid bag and its internal pressure is:H is negatively correlated with the internal pressure,while the r,t,and A are positively correlated with the internal pressure.