The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are ...The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.展开更多
采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性...采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性与强度UCS的影响。模型试验研究发现,通过多层互剪搅拌能够根除地表冒浆、防止糊钻抱钻、提高固化材料利用率。18组模型试验结果阐明搅拌桩在T-E-UCS之间存在固有关联,并揭示出机械参数、输出能量与桩身强度之间的本质关系。提供的计算方法可以定性指导选取合理的工艺参数,实现桩身设计强度目标。作为重要工艺因素,内外钻杆转速比RN与桩身强度试验曲线存在极值点,建议在工程中将1.80~2.20作为获取桩身峰值强度的最优RN值域。CS-DSM工法应用的系列研究结果为高质量搅拌桩工艺控制原则和质量保障体系提供了试验依据。展开更多
基金the National Natural Science Foundation of China(31870543)the Youth Science and Technology Innovation Fund of Nanjing Forestry University(cx2016017)+4 种基金the National Key R&D Program of China(2017YFC0703501)the National Natural Science Foundation of China(51878590)Jiangsu Province High-level Talent Selection Training(JNHB-127)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)for their funding。
文摘The wood friction welding technique with its high bonding strength,low cost,high efficiency,and without any adhesive has been increasing concern in China.Moso bamboo(Phyllostachys pubescens)and poplar(Populus sp.)are widely planted and used in the furniture industry,interior decoration,and wood structure construction in China.The aim of this work was to investigate the bonding performance of moso bamboo dowel rotation welded joints with different dowel/receiving hole diameter ratios.The results indicated that the ratio of dowel/receiving hole diameter was an important parameter that influenced the welding performance.The bonding strength of the bamboo-to-poplar welded joints at the optimal ratio of 10/7 was as high as 7.50 MPa,which was higher than that of the beech(Fagus sylvatica,L.),schima(Schima superba)dowels and PVAc glued joints.The temperature measurement results showed a peak temperature of bamboo dowel welding as high as 350–360°C.Some differences in the temperature curves between each dowel/hole diameter ratio group were observed at the three different hole depths,such as the friction time,peak temperatures,and stabilization time at the maximum temperature,which could explain the differences in welding strengths between different ratios.The SEM results showed the temperature-induced softening,melting and flowing of cell-interconnected polymer material in the wood and bamboo structure.In addition,the bamboo fibers(mainly vascular bundles)were wrapped to form a dense continuous bonding layer,similar to the reinforced concrete,thus producing a good bonding effect.The Fourier transform-infrared spectroscopy(FT-IR)analyses showed that the high temperature resulted in the increase of the lignin relative content due to the degradation reaction of cellulose in the welding zone,which improved the bonding properties.
文摘采用模型试验方法,对多层互剪搅拌桩工法(contra-rotational shear deep soil mixing,简称CS-DSM工法)的工艺因素进行了试验研究,探索了水泥掺量、单位桩长搅拌次数T、单位体积搅拌能量E以及内外钻杆转速比RN等工艺因素对搅拌桩均匀性与强度UCS的影响。模型试验研究发现,通过多层互剪搅拌能够根除地表冒浆、防止糊钻抱钻、提高固化材料利用率。18组模型试验结果阐明搅拌桩在T-E-UCS之间存在固有关联,并揭示出机械参数、输出能量与桩身强度之间的本质关系。提供的计算方法可以定性指导选取合理的工艺参数,实现桩身设计强度目标。作为重要工艺因素,内外钻杆转速比RN与桩身强度试验曲线存在极值点,建议在工程中将1.80~2.20作为获取桩身峰值强度的最优RN值域。CS-DSM工法应用的系列研究结果为高质量搅拌桩工艺控制原则和质量保障体系提供了试验依据。