Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The ...Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The effect of the interface between the segmental and inner linings on the bearing capacity has been widely investigated;however,the effect of soil on the internal water pressure bearing capacity has not been emphasized enough.Therefore,in this study,model tests and an analytical solution are presented to elucidate the effect of soil on the internal water pressure bearing capacity.First,model tests are conducted on double-lining models under sandy soil and highly weathered argillaceous siltstone conditions.The internal force and earth pressure under these different soil conditions are then compared to reveal the contribution of soil to the internal water pressure bearing capacity.Following this,an analytical solution,considering the soil–double-lining interaction,is proposed to further investigate the contribution of the soil.The analytical solution is verified with model tests.The analytical solution is in good agreement with the model test results and can be used to evaluate the mechanical behavior of the double-lining and soil contribution.The effect of soil on the bearing capacity is found to be related with the elastic modulus of the soil and the deformation state of the double-lining.Before the double-lining cracks,the sandy soil contributes 3.7%of the internal water pressure but the contribution of the soil rises to 10.4%when it is the highly weathered argillaceous siltstone.After the double-lining cracks,the soil plays an important role in bearing internal water pressure.The soil contributions of sandy soil and highly weathered argillaceous siltstones are 10.5%and 27.8%,respectively.The effect of soil should be considered in tunnel design with the internal water pressure.展开更多
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s...The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.展开更多
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produc...Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.展开更多
The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasing...The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.展开更多
A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .i...A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems.展开更多
Efficient detection of coalbed methane(CBM) co-production interference is the key to timely adjusting the development plan and improving the co-production efficiency. Based on production data of six typical CBM co-pro...Efficient detection of coalbed methane(CBM) co-production interference is the key to timely adjusting the development plan and improving the co-production efficiency. Based on production data of six typical CBM co-production wells in the Zhijin block of western Guizhou Province, China, the production characteristic curves, including production indication curve, curve of daily water production per unit drawdown of producing fluid level with time, and curve of water production per unit differential pressure with time have been analyzed to explore the response characteristics of co-production interference on the production characteristic curves. Based on the unit water inflow data of pumping test in coal measures, the critical value of in-situ water production of the CBM wells is 2 m^(3)/(d·m). The form and the slope of the initial linear section of the production indication curves have clear responses to the interference, which can be used to discriminate internal water source from external water source based on the critical slope value of 200 m^(3)/MPa in the initial linear section of the production indication curve. The time variation curves of water production per unit differential pressure can be divided into two morphological types: up-concave curve and down-concave curve. The former is represented by producing internal water with average daily gas production greater than 800 m^(3)/d, and the latter produces external water with average daily gas production smaller than 400 m^(3)/d. The method and critical indexes for recognition of CBM co-production interference based on the production characteristic curve are constructed. A template for discriminating interference of CBM co-production was constructed combined with the gas production efficiency analysis, which can provide reference for optimizing co-production engineering design and exploring economic and efficient co-production mode.展开更多
In this paper, the results of experiments concerning the fluctuations of internal waves on the thermocline and the fluctuations of acoustic amplitudes at different ranges in typical shallow water are presented. Record...In this paper, the results of experiments concerning the fluctuations of internal waves on the thermocline and the fluctuations of acoustic amplitudes at different ranges in typical shallow water are presented. Recorded time is 48.96 h. Thickness of the thermocline is about 2 m-4 m. The deviation of temperature recorded at a fixed depth is 10℃-15℃. The vertical displacement of isotherm curves is about 5 m-6 m, which is mainly dominated by the lowest model. The measured spectrums of vertical displacement have obvious spectral packet within the range of 0.05 cpm (20 min) and 0. 143 cpm (7 min) besides the diurnal and semidiurnal tide frequency bands. Spectrum attenuation coefficients are between -1.5 and -1.7. Numerical calculation shows that phase velocity and group velocity of internal waves are equal to 0.329 m/s at lower frequencies. And with the increasing of frequency, the group velocity differs from phase velocity at about 0.03 cpm (33.33 min) and drops more quickly. The measured fluctuation of acoustic amplitude is about 8 dB-10 dB. With the increasing of range, the fluctuation trends to be faster and acoustic signals are declining. Spectrum attenuation coefficients are between -1.45 and -2.0. At last, PE method is used to simulate the acoustic amplitude fluctuation, in which internal waves are the important element.展开更多
An inauguration ceremony was held to mark the opening of the Center for International Transboundary Water and Eco-Security, Tsinghua University (CITWES) on December 10, 2006. Zhai Haohui, Vice Minister of MWR, Tsing...An inauguration ceremony was held to mark the opening of the Center for International Transboundary Water and Eco-Security, Tsinghua University (CITWES) on December 10, 2006. Zhai Haohui, Vice Minister of MWR, Tsinghua Vice President Hu Heping and guests and representatives from some research institutions and universities in China participated in the event.展开更多
The Thirty-Second Workshop on Water Waves and Floating Bodies was held in Dalian from April23-26,2017,and hosted by State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(DUT).IWWWF...The Thirty-Second Workshop on Water Waves and Floating Bodies was held in Dalian from April23-26,2017,and hosted by State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(DUT).IWWWFB2017 attracts over90 participants from 17 countries,in which 65participants from abroad.展开更多
Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematical...Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.展开更多
基金the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-0700-07-456 E00051)the National Natural Science Foundation of China(Nos.51978517,52090082,and 52108381)the Shanghai Science and Technology Committee Program(Nos.21DZ1200601 and 20DZ1201404)。
文摘Water conveyance tunnels usually experience high internal water pressures and complex soil conditions.Therefore,shield tunnels with double-lining structure have been adopted because of their high bearing capacity.The effect of the interface between the segmental and inner linings on the bearing capacity has been widely investigated;however,the effect of soil on the internal water pressure bearing capacity has not been emphasized enough.Therefore,in this study,model tests and an analytical solution are presented to elucidate the effect of soil on the internal water pressure bearing capacity.First,model tests are conducted on double-lining models under sandy soil and highly weathered argillaceous siltstone conditions.The internal force and earth pressure under these different soil conditions are then compared to reveal the contribution of soil to the internal water pressure bearing capacity.Following this,an analytical solution,considering the soil–double-lining interaction,is proposed to further investigate the contribution of the soil.The analytical solution is verified with model tests.The analytical solution is in good agreement with the model test results and can be used to evaluate the mechanical behavior of the double-lining and soil contribution.The effect of soil on the bearing capacity is found to be related with the elastic modulus of the soil and the deformation state of the double-lining.Before the double-lining cracks,the sandy soil contributes 3.7%of the internal water pressure but the contribution of the soil rises to 10.4%when it is the highly weathered argillaceous siltstone.After the double-lining cracks,the soil plays an important role in bearing internal water pressure.The soil contributions of sandy soil and highly weathered argillaceous siltstones are 10.5%and 27.8%,respectively.The effect of soil should be considered in tunnel design with the internal water pressure.
基金This project is supported by National Natural Science Foundation of China(No.10342003).
文摘The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.
文摘Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation.
文摘The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.
基金Supported by the National Natural Science Foundation of China (No.20436040) and Xi'an Municipal Project for Industrial Research (No. GG06015).
文摘A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems.
基金National Natural Science Foundation of China(42002195)National Science and Technology Major Project(2016ZX05044)National Natural Science Foundation of China(42130802)。
文摘Efficient detection of coalbed methane(CBM) co-production interference is the key to timely adjusting the development plan and improving the co-production efficiency. Based on production data of six typical CBM co-production wells in the Zhijin block of western Guizhou Province, China, the production characteristic curves, including production indication curve, curve of daily water production per unit drawdown of producing fluid level with time, and curve of water production per unit differential pressure with time have been analyzed to explore the response characteristics of co-production interference on the production characteristic curves. Based on the unit water inflow data of pumping test in coal measures, the critical value of in-situ water production of the CBM wells is 2 m^(3)/(d·m). The form and the slope of the initial linear section of the production indication curves have clear responses to the interference, which can be used to discriminate internal water source from external water source based on the critical slope value of 200 m^(3)/MPa in the initial linear section of the production indication curve. The time variation curves of water production per unit differential pressure can be divided into two morphological types: up-concave curve and down-concave curve. The former is represented by producing internal water with average daily gas production greater than 800 m^(3)/d, and the latter produces external water with average daily gas production smaller than 400 m^(3)/d. The method and critical indexes for recognition of CBM co-production interference based on the production characteristic curve are constructed. A template for discriminating interference of CBM co-production was constructed combined with the gas production efficiency analysis, which can provide reference for optimizing co-production engineering design and exploring economic and efficient co-production mode.
文摘In this paper, the results of experiments concerning the fluctuations of internal waves on the thermocline and the fluctuations of acoustic amplitudes at different ranges in typical shallow water are presented. Recorded time is 48.96 h. Thickness of the thermocline is about 2 m-4 m. The deviation of temperature recorded at a fixed depth is 10℃-15℃. The vertical displacement of isotherm curves is about 5 m-6 m, which is mainly dominated by the lowest model. The measured spectrums of vertical displacement have obvious spectral packet within the range of 0.05 cpm (20 min) and 0. 143 cpm (7 min) besides the diurnal and semidiurnal tide frequency bands. Spectrum attenuation coefficients are between -1.5 and -1.7. Numerical calculation shows that phase velocity and group velocity of internal waves are equal to 0.329 m/s at lower frequencies. And with the increasing of frequency, the group velocity differs from phase velocity at about 0.03 cpm (33.33 min) and drops more quickly. The measured fluctuation of acoustic amplitude is about 8 dB-10 dB. With the increasing of range, the fluctuation trends to be faster and acoustic signals are declining. Spectrum attenuation coefficients are between -1.45 and -2.0. At last, PE method is used to simulate the acoustic amplitude fluctuation, in which internal waves are the important element.
文摘An inauguration ceremony was held to mark the opening of the Center for International Transboundary Water and Eco-Security, Tsinghua University (CITWES) on December 10, 2006. Zhai Haohui, Vice Minister of MWR, Tsinghua Vice President Hu Heping and guests and representatives from some research institutions and universities in China participated in the event.
文摘The Thirty-Second Workshop on Water Waves and Floating Bodies was held in Dalian from April23-26,2017,and hosted by State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(DUT).IWWWFB2017 attracts over90 participants from 17 countries,in which 65participants from abroad.
基金the financial support of the National Natural Science Foundation of China(Nos.51378491,21307149)
文摘Polyethylene terephthalate mesh(PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis(FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2 μm. The performance of the optimal FO membrane was tested using 0.2 mol/L Na Cl as the feed solution and 1.5 mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47 L/(m2·hr) and salt rejection of95.48% in FO mode. While in pressure retarded osmosis(PRO) mode, the water flux was4.74 L/(m2·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes.