Risk evaluation is one of the important elements of international engineering project management. The risk factors of international engineering projects are systematically analyzed from multiple dimension features of ...Risk evaluation is one of the important elements of international engineering project management. The risk factors of international engineering projects are systematically analyzed from multiple dimension features of the projects. The muhilayer evaluation index system for the international engineering project risk assessment is proposed and constructed, which consists of 8 I-grade indexes and 24 II-grade indexes as policy risk, market risk, resource risk, and technical scheme risk, schedule risk, funding risk, personnel risk and management risk. And then the self-evaluation and benchmarking evaluation methods are applied to evaluate the international engineering project risk, and established the corresponding mathematical models. Finally, a project evaluation example is given to illustrate the applicability and effectiveness of the mathematical models.展开更多
Organized by Consiglio Nazional delle Ricerche (CNR), Gruppo Nedonale diIdraulice(GNI) with the support of the Ministry of Public Works and under the auspices of theCoastal Engineering Research Council(CERC) of the Am...Organized by Consiglio Nazional delle Ricerche (CNR), Gruppo Nedonale diIdraulice(GNI) with the support of the Ministry of Public Works and under the auspices of theCoastal Engineering Research Council(CERC) of the American Society of CivilEngineering(ASCE), and co-sponsored by the international Association for Hydraulic of Navi-gation Congress(PIANC) and by the Associazione di Ingegneria Offshore e Marina(AIOM).Aim展开更多
The establishment meeting of International Society of Bionic Engineering (ISBE) convened grandly at Zhuhai,China in September 14-16, 2010. Related officials and representatives attended the opening ceremony, who camef...The establishment meeting of International Society of Bionic Engineering (ISBE) convened grandly at Zhuhai,China in September 14-16, 2010. Related officials and representatives attended the opening ceremony, who camefrom the Research Councils, UK, the National Natural Science Foundation of America, the Bionic Society of Ger-展开更多
Journal Introduction"International Journal of Plant Engineering and Management″ is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwester...Journal Introduction"International Journal of Plant Engineering and Management″ is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly publication publicly issued at home and abroad.Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the展开更多
Journal Introduction″International Journal of Plant Engineering and Management″is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwestern Pol...Journal Introduction″International Journal of Plant Engineering and Management″is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly展开更多
Journal Introduction "International Journal of Plant Engineering and Management" is in the charge of Ministry of Industry and Information Technology of the People's Republic of China, and organized by Northwestern ...Journal Introduction "International Journal of Plant Engineering and Management" is in the charge of Ministry of Industry and Information Technology of the People's Republic of China, and organized by Northwestern Polytechnical University. It is a kind of English academic quarterly publication publicly issued at home and abroad. Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the application technology of equipment and industry management .展开更多
Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual ener...Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual energy content can be usefully recovered,for example in Organic Rankine Cycles(ORC).This technology has been largely consolidated in stationary power plants but not yet for mobile applications,such as road transport,due to the limitations in the layout and to the constraints on the size and weight of the ORC system.An ORC system installed on the exhaust line of a bus powered by a natural gas spark ignition engine has been investigated.The thermal power available at engine exhaust has been evaluated by measuring gas temperature and mass flow rate during real driving operation.The waste thermal power has been considered as heat input for the ORC plant simulation.A detailed heat exchanger model has been developed because it is a crucial component for the ORC performance.The exergy analysis of the ORC was performed comparing different working fluids:R601,R1233zd(E)and two zeotropic blends of the two organic pure fluids.The model allowed the evaluation of the ORC produced energy over the driving cycle and the potential benefit on the engine efficiency.展开更多
Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide req...Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.展开更多
Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation o...Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.展开更多
The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the ...The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.展开更多
Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of v...Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.展开更多
A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ...A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.展开更多
Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine cranks...Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine crankshaft assembly,reveals obvious simulation errors.The nonlinear dynamic characteristics of a crankshaft assembly are instructionally significant to the improvement of modeling correctness.In this paper,a general expression for the non-constant inertia of a crankshaft assembly is derived based on the instantaneous kinetic energy equivalence method.The nonlinear dynamic equations of a multi-cylinder crankshaft assembly are established using the Lagrange rule considering nonlinear factors such as the non-constant inertia of reciprocating components and the structural damping of shaft segments.The natural frequency and mode shapes of a crankshaft assembly are investigated employing the eigenvector method.The forced vibration response of a diesel engine crankshaft assembly taking into account the non-constant inertia is studied using the numerical integral method.The simulation results are compared with a lumped mass model and a detailed model using the system matrix method.Results of non-linear torsional vibration analysis indicate that the additional excitation torque created by non-constant inertia activates the 2nd order rolling vibration,and the additional damping torque resulting from the non-constant inertia is the main nonlinear factor.The increased torsional angular displacement evoked by the high order excitation torque relates to the non-constant inertia.This research project is aimed at improving nonlinear dynamics theory,and the confirmed nonlinear parameters can be used for the structure design of a crankshaft assembly.展开更多
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used...This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.展开更多
基金supported by National Natural Science Foundation of China under Grant No.71172123Aviation Science Fund under Grant No.2012ZG53083humanities and social science research special task project of Chinese Ministry of education under Grant No.10JDSZ1010
文摘Risk evaluation is one of the important elements of international engineering project management. The risk factors of international engineering projects are systematically analyzed from multiple dimension features of the projects. The muhilayer evaluation index system for the international engineering project risk assessment is proposed and constructed, which consists of 8 I-grade indexes and 24 II-grade indexes as policy risk, market risk, resource risk, and technical scheme risk, schedule risk, funding risk, personnel risk and management risk. And then the self-evaluation and benchmarking evaluation methods are applied to evaluate the international engineering project risk, and established the corresponding mathematical models. Finally, a project evaluation example is given to illustrate the applicability and effectiveness of the mathematical models.
文摘Organized by Consiglio Nazional delle Ricerche (CNR), Gruppo Nedonale diIdraulice(GNI) with the support of the Ministry of Public Works and under the auspices of theCoastal Engineering Research Council(CERC) of the American Society of CivilEngineering(ASCE), and co-sponsored by the international Association for Hydraulic of Navi-gation Congress(PIANC) and by the Associazione di Ingegneria Offshore e Marina(AIOM).Aim
文摘The establishment meeting of International Society of Bionic Engineering (ISBE) convened grandly at Zhuhai,China in September 14-16, 2010. Related officials and representatives attended the opening ceremony, who camefrom the Research Councils, UK, the National Natural Science Foundation of America, the Bionic Society of Ger-
文摘Journal Introduction"International Journal of Plant Engineering and Management″ is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly publication publicly issued at home and abroad.Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the
文摘Journal Introduction″International Journal of Plant Engineering and Management″is in the charge of Ministry of Industry and Information Technology of the People’s Republic of China,and organized by Northwestern Polytechnical University.It is a kind of English academic quarterly
文摘Journal Introduction "International Journal of Plant Engineering and Management" is in the charge of Ministry of Industry and Information Technology of the People's Republic of China, and organized by Northwestern Polytechnical University. It is a kind of English academic quarterly publication publicly issued at home and abroad. Plant engineering and management is a comprehensive interdisciplinary subject mainly reporting academic research on the application technology of equipment and industry management .
基金The authors gratefully acknowledge Universitàdegli studi della Campania“L.Vanvitelli”for funding the research project CHIMERA with V:ALERE 2019 grant。
文摘Waste heat recovery is one of the possible solutions to improve the efficiency of internal combustion engines.Instead of wasting the exhaust stream of an energy conversion system into the environment,its residual energy content can be usefully recovered,for example in Organic Rankine Cycles(ORC).This technology has been largely consolidated in stationary power plants but not yet for mobile applications,such as road transport,due to the limitations in the layout and to the constraints on the size and weight of the ORC system.An ORC system installed on the exhaust line of a bus powered by a natural gas spark ignition engine has been investigated.The thermal power available at engine exhaust has been evaluated by measuring gas temperature and mass flow rate during real driving operation.The waste thermal power has been considered as heat input for the ORC plant simulation.A detailed heat exchanger model has been developed because it is a crucial component for the ORC performance.The exergy analysis of the ORC was performed comparing different working fluids:R601,R1233zd(E)and two zeotropic blends of the two organic pure fluids.The model allowed the evaluation of the ORC produced energy over the driving cycle and the potential benefit on the engine efficiency.
文摘Design of internal combustion engine (ICE) components is one of the earliest and also the most active areas in which computer aided modeling techniques are applied. Computer aided modeling techniques could provide requisite information for follow up designing segments such as structural analysis, design of technological process and manufacturing etc, and thereby lead to the reduction of product design period and the quality and reliability improvement of ICE components. So the developing situations of ICE components' 2 D drafting, 3 D modeling of ICE, overall CAD of ICE as well as component design expert system etc. are surveyed, which are the typical applications of computer aided modeling techniques in ICE component design process, and some existent problems and tasks are pointed out so as to make some references for the further research work.
文摘Friction and lubrication simulation analysis of internal combustion engine bearings are studied. A series of software implementary precepts for mathematical modeling, to analytic calculating and realizing simulation outcome are brought forward. As a dynamic simulating technique is introduced into the process of engine bearing design, simulation models of the oil film are built and the emulational analysis of the shaft center track is carried out. A software program package “Engine Bearing Friction and Lubrication Dynamic Simulation System” is developed to realize the real time simulation of the working status of bearing during the design process. Through developing virtualized products, the defects of the product design can be found in time and improve the products at once. Thus the purpose of predicting and controlling the cost, quality and design period of the products can be achieved.
文摘The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.
基金supported by National Natural Science Foundation of China (Grant No. 50575107)
文摘Intenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate, output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.
基金National Hi-tech Research end Development Program of China (863 Program,No.2002AA501700,No.2003AA501012)
文摘A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
基金supported by National Natural Science Foundation of China (Grant No. 50975026)Ministerial Eleventh Five-Year Plan Basic Product Pre-research Project of China (Grant No. D2220062905)
文摘Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines.The linear lumped mass method,which has been universally applied to the dynamic modeling of engine crankshaft assembly,reveals obvious simulation errors.The nonlinear dynamic characteristics of a crankshaft assembly are instructionally significant to the improvement of modeling correctness.In this paper,a general expression for the non-constant inertia of a crankshaft assembly is derived based on the instantaneous kinetic energy equivalence method.The nonlinear dynamic equations of a multi-cylinder crankshaft assembly are established using the Lagrange rule considering nonlinear factors such as the non-constant inertia of reciprocating components and the structural damping of shaft segments.The natural frequency and mode shapes of a crankshaft assembly are investigated employing the eigenvector method.The forced vibration response of a diesel engine crankshaft assembly taking into account the non-constant inertia is studied using the numerical integral method.The simulation results are compared with a lumped mass model and a detailed model using the system matrix method.Results of non-linear torsional vibration analysis indicate that the additional excitation torque created by non-constant inertia activates the 2nd order rolling vibration,and the additional damping torque resulting from the non-constant inertia is the main nonlinear factor.The increased torsional angular displacement evoked by the high order excitation torque relates to the non-constant inertia.This research project is aimed at improving nonlinear dynamics theory,and the confirmed nonlinear parameters can be used for the structure design of a crankshaft assembly.
文摘This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.