Due to the rapid economic growth and the continuous increase of human, ecosystem disturbances and habitat destructions, the biodiversity of freshwater ecosystems in China is rapidly declining. This issue is gradually ...Due to the rapid economic growth and the continuous increase of human, ecosystem disturbances and habitat destructions, the biodiversity of freshwater ecosystems in China is rapidly declining. This issue is gradually gaining the government’s attention as its environmental policy becomes more and more equally-weighed on both “pollution prevention and control” and “ecological conservation” issues while only the former was emphasized in the past. However, some unsolved issues still exist with regard to aquatic biodiversity monitoring and management in China. For example, there are functional overlaps among governmental departments; regional ecological function divisions are not clarified; biodiversity is usually neglected or not emphasized in environmental impact assessment for construction projects; and so on. In our opinion, the following areas should be emphasied: (a) enhancing the cooperation among governmental departments; (b) setting up mechanisms to allow ecological watershed management; (c) establishing the biodiversity conservation and ecological restoration planning for local freshwater ecosystem; (d) clarifying the ecological function divisions; (e) enhancing the biodiversity monitoring and management for freshwater ecosystem in environmental impact assessment studies for industrial construction and rural development projects; (f) establishing a technical regulatory framework for related monitoring and management activities which includes an index system for monitoring and assessment; (g) studying and establishing the related biological criteria for formulating assessment standards; and (h) paying attention to aquatic vegetation, fishes, benthic macro-invertebrates and other key aquatic assemblages.展开更多
This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things...This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things to measure air pollution level in the city center of Uppsala.Through deploying low-cost wireless sensors,it is possible to obtain more fine-grained and real-time air pollution levels at different locations.The sensors on public transport vehicles complement the readings from stationary sensors and the only ground level monitoring station in Uppsala.The paper describes the deployment of wireless sensors on Uppsala buses and the integration of the mobile sensor network with the GreenIoT testbed.Extensive experiments have been conducted to evaluate the communication quality and data quality of the system.展开更多
Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coast...Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coastal areas and provides livelihood opportunities to the fishermen and pastoral families living in these areas. In real sense, mangrove is the Kalpvriksh (divine tree which fulfills all the desires) for the coastal communities. The restoration and plantation of mangroves have received a lot of attentions worldwide. To assess the impact of mangrove plantation activities and to monitor the mangrove regeneration and restoration in various villages, a joint study under the Integrated Coastal Zone Management Project (ICZMP) was taken up by Gujarat Ecology Commission (GEC) and Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG) in the Gulf of Kachchh, Gujarat State.?The major objective of this study was to monitor the increase in mangrove cover in coastal areas of Gulf of Kachchh using the Indian Remote Sensing Satellite data of 2005, 2011 and 2014. The mangrove regeneration was monitored using multi-temporal Indian Remote Sensing Satellite (IRS) LISS-III and LISS-IV digital data covering Gulf of Kachchh region. The multi-temporal IRS LISS-III data covering Gulf of Kachchh of October-2005, November-2011 and LISS-IV data of April-2014 was analyzed. The mangrove density and mangrove area in different talukas was estimated based on the analysis of IRS LISS-III digital data. The mangroves have been delineated based on the pink colour observed on satellite images and the area was estimated in the Geographic Information System (GIS) environment. The taluka or block-level mangrove areas were estimated and changes in the areas were monitored during the period of six years from 2005 to 2011. It was observed that the areas where mangrove regeneration activities were carried out with active participation of Community Based Organizations (CBOs), mangrove density as well as mangrove area have substantially increased in the Gulf of Kachchh region.展开更多
The paper is an update of two earlier review papers concerning the application of the methodology of mathematical systems theory to population ecology, a research line initiated two decades ago. At the beginning the r...The paper is an update of two earlier review papers concerning the application of the methodology of mathematical systems theory to population ecology, a research line initiated two decades ago. At the beginning the research was concentrated on basic qualitative properties of ecological models, such as observability and controllability. Observability is closely related to the monitoring problem of ecosystems, while controllability concerns both sustainable harvesting of population systems and equilibrium control of such systems, which is a major concern of conservation biology. For population system, observability means that, e.g. from partial observation of the system (observing only certain indicator species), in principle the whole state process can be recovered. Recently, for different ecosystems, the so-called observer systems (or state estimators) have been constructed that enable us to effectively estimate the whole state process from the observation. This technique offers an efficient methodology for monitoring of complex ecosystems (including spatially and stage-structured population systems). In this way, from the observation of a few indicator species the state of the whole complex system can be monitored, in particular certain abiotic effects such as environmental contamination can be identified. In this review, with simple and transparent examples, three topics illustrate the recent developments in monitoring methodology of ecological systems: stock estimation of a fish population with reserve area;and observer construction for two vertically structured population systems (verticum-type systems): a four-level ecological chain and a stage-structured fishery model with reserve area.展开更多
The aim of the work was to determine the spatial distribution of activity in the forest on the area of the Forest Promotional Complex“Sudety Zachodnie”using mobile phone data.The study identified the sites with the ...The aim of the work was to determine the spatial distribution of activity in the forest on the area of the Forest Promotional Complex“Sudety Zachodnie”using mobile phone data.The study identified the sites with the highest(hot spot)and lowest(cold spot)use.Habitat,stand,demographic,topographic and spatial factors affecting the distribution of activity were also analyzed.Two approaches were applied in our research:global and local Moran’s coefficients,and a machine learning technique,Boosted Regression Trees.The results show that 11,503,320 visits to forest areas were recorded in the“Sudety Zachodnie”in 2019.The most popular season for activities was winter,and the least popular was spring.Using global and local Moran’s I coefficients,three small hot clusters of activity and one large cold cluster were identified.Locations with high values with similar neighbours(hot-spots)were most often visited forest areas,averaging almost 200,000 visits over 2019.Significantly fewer visits were recorded in cold-spots,the average number of visits to these areas was about 4,500.The value of global Moran’s I was equal to 0.54 and proved significant positive spatial autocorrelation.Results of Boosted Regression Trees modeling of visits in forest,using tree stand habitat and spatial factors accurately explained 76%of randomly selected input data.The variables that had the greatest effect on the distribution of activities were the density of hiking and biking trails and diversity of topography.The methodology presented in this article allows delineation of Cultural Ecosystem Services hot spots in forest areas based on mobile phone data.It also allows the identification of factors that may influence the distribution of visits in forests.Such data are important for managing forest areas and adapting forest management to the needs of society while maintaining ecosystem stability.展开更多
The Ross Sea region is a biologically rich and dynamic environment and,although protected under various instruments of the Antarctic Treaty System,is threatened by a changing climate and increasing human activities lo...The Ross Sea region is a biologically rich and dynamic environment and,although protected under various instruments of the Antarctic Treaty System,is threatened by a changing climate and increasing human activities locally and globally.This opinion editorial describes the importance of research and monitoring in the Ross Sea and identifies opportunities and barriers to enhance them.展开更多
中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样...中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样地。自2005年以来,环江站依照国家生态系统观测研究网络(National Ecosystem Research Network of China,简称CNERN)和CERN农田生态系统观测指标要求,逐一开展针对喀斯特峰丛洼地农田生态系统水分、土壤、生物、气象等环境要素的监测活动。本数据集收集、整理了环江站2006–2022年8个长期联网监测样地的土壤养分数据,包括土壤有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾、缓效钾、pH值等9项指标,均进行了严格的数据质量控制与评估,并附有完整的样地背景信息和分析方法记录。本数据集反映了桂西北喀斯特峰丛洼地农业区传统代表性作物早晚稻、玉米、大豆、桑叶、柑橘等农作地土壤常规养分含量动态变化,对指导喀斯特峰丛洼地农业生产、培育土壤地力具有参考依据。展开更多
The Sundarbans is the world’s most extensive natural mangrove forest and home to various natural resources. The population in the vicinity has increased, causing more dependency on the resources of the Sundarbans. Th...The Sundarbans is the world’s most extensive natural mangrove forest and home to various natural resources. The population in the vicinity has increased, causing more dependency on the resources of the Sundarbans. The increasing industrialization, urbanization, aquaculture, intensive agricultural practices, seaports, tourism facilities, and so on in the peripheral areas of the Sundarbans have made significant changes in the surrounding and upstream land uses of the Sundarbans. This situation may have detrimental influences on the ecosystem components of the Sundarbans. Therefore, it is highly demanded to prepare a piece of baseline information or database of different sources of pollution and their present status in the various components of the Sundarbans. This effort helps to identify issues and concerns, determine the key elements of the ecosystem to monitor the level or overall quality of the Sundarbans ecosystem. The present study systematically collects the potential sources of pollution, types, and current levels in the ecosystem components of the Sundarbans using academic databases, libraries, and online resources. Discharge of industrial waste into water, soil and air, heavy metal pollution, use of agrochemicals, oil (refined and crude) pollution, plastic materials from urban areas, and tourism are the major issues and concerns related to the sustainability of the Sundarbans ecosystem. The air quality of the Sundarbans is in good condition with 0 - 50 AQI of Bangladesh. While BOD, COD, TDS, TSS varied from 2.0 to 3.8 mg/L, 21.6 to 416 mg/L, 146.9 to 24,100 mg/L and 54 to 155 mg/L, respectively. Soil EC, organic carbon, total nitrogen, and total phosphorus ranged from 3.01 - 5.82 mS/cm, 1.41% - 2.69%, 0.51 - 1.05 mg/g, and 0.32 - 0.51 mg/g respectively. The air, water and soil quality parameters varied with the sites and seasons and not much at the state of contamination. Indeed, we must pay much attention to the Sundarbans’ air, water and soil quality with the massive and progressive change of the nearby land use pattern.展开更多
A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa b...A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.展开更多
文摘Due to the rapid economic growth and the continuous increase of human, ecosystem disturbances and habitat destructions, the biodiversity of freshwater ecosystems in China is rapidly declining. This issue is gradually gaining the government’s attention as its environmental policy becomes more and more equally-weighed on both “pollution prevention and control” and “ecological conservation” issues while only the former was emphasized in the past. However, some unsolved issues still exist with regard to aquatic biodiversity monitoring and management in China. For example, there are functional overlaps among governmental departments; regional ecological function divisions are not clarified; biodiversity is usually neglected or not emphasized in environmental impact assessment for construction projects; and so on. In our opinion, the following areas should be emphasied: (a) enhancing the cooperation among governmental departments; (b) setting up mechanisms to allow ecological watershed management; (c) establishing the biodiversity conservation and ecological restoration planning for local freshwater ecosystem; (d) clarifying the ecological function divisions; (e) enhancing the biodiversity monitoring and management for freshwater ecosystem in environmental impact assessment studies for industrial construction and rural development projects; (f) establishing a technical regulatory framework for related monitoring and management activities which includes an index system for monitoring and assessment; (g) studying and establishing the related biological criteria for formulating assessment standards; and (h) paying attention to aquatic vegetation, fishes, benthic macro-invertebrates and other key aquatic assemblages.
文摘This paper presents an experimental study on real-time air pollution monitoring using wireless sensors on public transport vehicles.The study is part of the GreenIoT project in Sweden,which utilizes Internet-of-Things to measure air pollution level in the city center of Uppsala.Through deploying low-cost wireless sensors,it is possible to obtain more fine-grained and real-time air pollution levels at different locations.The sensors on public transport vehicles complement the readings from stationary sensors and the only ground level monitoring station in Uppsala.The paper describes the deployment of wireless sensors on Uppsala buses and the integration of the mobile sensor network with the GreenIoT testbed.Extensive experiments have been conducted to evaluate the communication quality and data quality of the system.
文摘Indian coast harbors richly diverse and critical coastal habitats like coral reefs and mangroves. Mangroves form one of the most important ecosystems of coastal and marine areas. It safeguards the ecology of the coastal areas and provides livelihood opportunities to the fishermen and pastoral families living in these areas. In real sense, mangrove is the Kalpvriksh (divine tree which fulfills all the desires) for the coastal communities. The restoration and plantation of mangroves have received a lot of attentions worldwide. To assess the impact of mangrove plantation activities and to monitor the mangrove regeneration and restoration in various villages, a joint study under the Integrated Coastal Zone Management Project (ICZMP) was taken up by Gujarat Ecology Commission (GEC) and Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG) in the Gulf of Kachchh, Gujarat State.?The major objective of this study was to monitor the increase in mangrove cover in coastal areas of Gulf of Kachchh using the Indian Remote Sensing Satellite data of 2005, 2011 and 2014. The mangrove regeneration was monitored using multi-temporal Indian Remote Sensing Satellite (IRS) LISS-III and LISS-IV digital data covering Gulf of Kachchh region. The multi-temporal IRS LISS-III data covering Gulf of Kachchh of October-2005, November-2011 and LISS-IV data of April-2014 was analyzed. The mangrove density and mangrove area in different talukas was estimated based on the analysis of IRS LISS-III digital data. The mangroves have been delineated based on the pink colour observed on satellite images and the area was estimated in the Geographic Information System (GIS) environment. The taluka or block-level mangrove areas were estimated and changes in the areas were monitored during the period of six years from 2005 to 2011. It was observed that the areas where mangrove regeneration activities were carried out with active participation of Community Based Organizations (CBOs), mangrove density as well as mangrove area have substantially increased in the Gulf of Kachchh region.
文摘The paper is an update of two earlier review papers concerning the application of the methodology of mathematical systems theory to population ecology, a research line initiated two decades ago. At the beginning the research was concentrated on basic qualitative properties of ecological models, such as observability and controllability. Observability is closely related to the monitoring problem of ecosystems, while controllability concerns both sustainable harvesting of population systems and equilibrium control of such systems, which is a major concern of conservation biology. For population system, observability means that, e.g. from partial observation of the system (observing only certain indicator species), in principle the whole state process can be recovered. Recently, for different ecosystems, the so-called observer systems (or state estimators) have been constructed that enable us to effectively estimate the whole state process from the observation. This technique offers an efficient methodology for monitoring of complex ecosystems (including spatially and stage-structured population systems). In this way, from the observation of a few indicator species the state of the whole complex system can be monitored, in particular certain abiotic effects such as environmental contamination can be identified. In this review, with simple and transparent examples, three topics illustrate the recent developments in monitoring methodology of ecological systems: stock estimation of a fish population with reserve area;and observer construction for two vertically structured population systems (verticum-type systems): a four-level ecological chain and a stage-structured fishery model with reserve area.
基金Funded by the National Science Centre,Poland under the OPUS call in the Weave programme(project No.2021/43/I/HS4/01451)funded by Ministry of Education and Science(901503)。
文摘The aim of the work was to determine the spatial distribution of activity in the forest on the area of the Forest Promotional Complex“Sudety Zachodnie”using mobile phone data.The study identified the sites with the highest(hot spot)and lowest(cold spot)use.Habitat,stand,demographic,topographic and spatial factors affecting the distribution of activity were also analyzed.Two approaches were applied in our research:global and local Moran’s coefficients,and a machine learning technique,Boosted Regression Trees.The results show that 11,503,320 visits to forest areas were recorded in the“Sudety Zachodnie”in 2019.The most popular season for activities was winter,and the least popular was spring.Using global and local Moran’s I coefficients,three small hot clusters of activity and one large cold cluster were identified.Locations with high values with similar neighbours(hot-spots)were most often visited forest areas,averaging almost 200,000 visits over 2019.Significantly fewer visits were recorded in cold-spots,the average number of visits to these areas was about 4,500.The value of global Moran’s I was equal to 0.54 and proved significant positive spatial autocorrelation.Results of Boosted Regression Trees modeling of visits in forest,using tree stand habitat and spatial factors accurately explained 76%of randomly selected input data.The variables that had the greatest effect on the distribution of activities were the density of hiking and biking trails and diversity of topography.The methodology presented in this article allows delineation of Cultural Ecosystem Services hot spots in forest areas based on mobile phone data.It also allows the identification of factors that may influence the distribution of visits in forests.Such data are important for managing forest areas and adapting forest management to the needs of society while maintaining ecosystem stability.
基金funded by the Antarctic and Southern Ocean Coalition (www.asoc.org)
文摘The Ross Sea region is a biologically rich and dynamic environment and,although protected under various instruments of the Antarctic Treaty System,is threatened by a changing climate and increasing human activities locally and globally.This opinion editorial describes the importance of research and monitoring in the Ross Sea and identifies opportunities and barriers to enhance them.
文摘中国科学院环江喀斯特生态系统观测研究站(本文中简称“环江站”)是我国西南喀斯特地区重要的农业生态系统长期野外定位观测研究站,是依照中国生态系统研究网络(Chinese Ecosystem Research Network,简称CERN)联网监测规范布置的试验样地。自2005年以来,环江站依照国家生态系统观测研究网络(National Ecosystem Research Network of China,简称CNERN)和CERN农田生态系统观测指标要求,逐一开展针对喀斯特峰丛洼地农田生态系统水分、土壤、生物、气象等环境要素的监测活动。本数据集收集、整理了环江站2006–2022年8个长期联网监测样地的土壤养分数据,包括土壤有机质、全氮、全磷、全钾、碱解氮、有效磷、速效钾、缓效钾、pH值等9项指标,均进行了严格的数据质量控制与评估,并附有完整的样地背景信息和分析方法记录。本数据集反映了桂西北喀斯特峰丛洼地农业区传统代表性作物早晚稻、玉米、大豆、桑叶、柑橘等农作地土壤常规养分含量动态变化,对指导喀斯特峰丛洼地农业生产、培育土壤地力具有参考依据。
文摘The Sundarbans is the world’s most extensive natural mangrove forest and home to various natural resources. The population in the vicinity has increased, causing more dependency on the resources of the Sundarbans. The increasing industrialization, urbanization, aquaculture, intensive agricultural practices, seaports, tourism facilities, and so on in the peripheral areas of the Sundarbans have made significant changes in the surrounding and upstream land uses of the Sundarbans. This situation may have detrimental influences on the ecosystem components of the Sundarbans. Therefore, it is highly demanded to prepare a piece of baseline information or database of different sources of pollution and their present status in the various components of the Sundarbans. This effort helps to identify issues and concerns, determine the key elements of the ecosystem to monitor the level or overall quality of the Sundarbans ecosystem. The present study systematically collects the potential sources of pollution, types, and current levels in the ecosystem components of the Sundarbans using academic databases, libraries, and online resources. Discharge of industrial waste into water, soil and air, heavy metal pollution, use of agrochemicals, oil (refined and crude) pollution, plastic materials from urban areas, and tourism are the major issues and concerns related to the sustainability of the Sundarbans ecosystem. The air quality of the Sundarbans is in good condition with 0 - 50 AQI of Bangladesh. While BOD, COD, TDS, TSS varied from 2.0 to 3.8 mg/L, 21.6 to 416 mg/L, 146.9 to 24,100 mg/L and 54 to 155 mg/L, respectively. Soil EC, organic carbon, total nitrogen, and total phosphorus ranged from 3.01 - 5.82 mS/cm, 1.41% - 2.69%, 0.51 - 1.05 mg/g, and 0.32 - 0.51 mg/g respectively. The air, water and soil quality parameters varied with the sites and seasons and not much at the state of contamination. Indeed, we must pay much attention to the Sundarbans’ air, water and soil quality with the massive and progressive change of the nearby land use pattern.
基金Under the auspices of National Natural Science Foundation of China(No.31161140355)
文摘A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.