水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域...水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。展开更多
针对基于深度学习轴承故障诊断模型由于工况因素导致诊断效果不佳的问题,提出了一种用聚类与插值(Clustering and interpolation,CAI)改进深度学习算法实现变工况轴承故障诊断的方法。首先,采用有限元法仿真多工况、多故障类型的轴承振...针对基于深度学习轴承故障诊断模型由于工况因素导致诊断效果不佳的问题,提出了一种用聚类与插值(Clustering and interpolation,CAI)改进深度学习算法实现变工况轴承故障诊断的方法。首先,采用有限元法仿真多工况、多故障类型的轴承振动信号数据,获取足够样本;然后,完成宽卷积核深度卷积神经网络(Deepconvolutionalneuralnetworks with widekernel,WDCNN)模型构建,并利用任一工况下的数据完成模型训练;最后,利用CAI算法统一其余工况数据的转速信息,调用WDCNN模型完成对其余工况样本的故障诊断。结果显示,WDCNN模型对训练数据所属工况故障诊断准确率达99.9%,对经过CAI算法处理其他工况数据故障诊断识别率分别为98.7%、99.2%,是一种简单、准确有效、泛化能力强的故障诊断方法。展开更多
文摘水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。
文摘针对基于深度学习轴承故障诊断模型由于工况因素导致诊断效果不佳的问题,提出了一种用聚类与插值(Clustering and interpolation,CAI)改进深度学习算法实现变工况轴承故障诊断的方法。首先,采用有限元法仿真多工况、多故障类型的轴承振动信号数据,获取足够样本;然后,完成宽卷积核深度卷积神经网络(Deepconvolutionalneuralnetworks with widekernel,WDCNN)模型构建,并利用任一工况下的数据完成模型训练;最后,利用CAI算法统一其余工况数据的转速信息,调用WDCNN模型完成对其余工况样本的故障诊断。结果显示,WDCNN模型对训练数据所属工况故障诊断准确率达99.9%,对经过CAI算法处理其他工况数据故障诊断识别率分别为98.7%、99.2%,是一种简单、准确有效、泛化能力强的故障诊断方法。