The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully disc...The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.展开更多
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app...<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>展开更多
In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three ...In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.展开更多
In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-u...In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
Quadrilateral finite elements for linear micropolar continuum theory are developed using linked interpolation.In order to satisfy convergence criteria,the newly presented finite elements are modified using the Petrov-...Quadrilateral finite elements for linear micropolar continuum theory are developed using linked interpolation.In order to satisfy convergence criteria,the newly presented finite elements are modified using the Petrov-Galerkin method in which different interpolation is used for the test and trial functions.The elements are tested through four numerical examples consisting of a set of patch tests,a cantilever beam in pure bending and a stress concentration problem and compared with the analytical solution and quadrilateral micropolar finite elements with standard Lagrangian interpolation.In the higher-order patch test,the performance of the first-order element is significantly improved.However,since the problems analysed are already describable with quadratic polynomials,the enhancement due to linked interpolation for higher-order elements could not be highlighted.All the presented elements also faithfully reproduce the micropolar effects in the stress concentration analysis,but the enhancement here is negligible with respect to standard Lagrangian elements,since the higher-order polynomials in this example are not needed.展开更多
For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has ...For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has the accuracy O(h^min{2k,k+4}) The theoretical analysis coincides the reported numerical results.展开更多
In this work, investigation of particle rebound characteristics due to impact with surface of a target material is presented. The rebound of a spherical particle after impact on a planar surface was analyzed in detail...In this work, investigation of particle rebound characteristics due to impact with surface of a target material is presented. The rebound of a spherical particle after impact on a planar surface was analyzed in detail. Specifically, the coefficient of restitution of the particle under various impact conditions was investigated numerically. This study has been conducted by carrying out a series of FEM-based (finite element method) simulations using ANSYS Autodyn software. First, a summary about the state of the art and the theoretical models for the elastic collisions were reviewed. Afterwards, the impact of an aluminum oxide particle on an aluminum alloy target surface was modeled. Using the Autodyn tool, the results were compared and validated by the experimental results of Gorham and Kharaz [1]. Selection of an appropriate equation of state (EOS) and a strength model for each material had a strong effect on the results. For both materials, the Shock EOS was applied for the final simulations. As the strength model, the Johnson-Cook and the elastic model were used, respectively. The agreement of the obtained numerical results with the experimental data confirmed that the proposed model can precisely predict the real behavior of the particle after the impact, when the material models are properly chosen. Furthermore, the effects of impact velocity and impact angle on the rebound characteristics of the particle were analyzed in detail. It was found that the selection of the exact value of friction coefficient has a drastic effect on the prediction of restitution coefficient values, especially the tangential restitution coefficient.展开更多
This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the re...This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.展开更多
We’ll consider the model of two-phase compressible miscible displacement in porous media which includes molecular diffusion and dispersion in one dimensional space. Time-discretization procedure is established and an...We’ll consider the model of two-phase compressible miscible displacement in porous media which includes molecular diffusion and dispersion in one dimensional space. Time-discretization procedure is established and analysed. The optimal error estimate in L2 norm is proved by introducing a new interpolation operator R.展开更多
The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considere...The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considered, and the error estimation of the twoorder and two-scale approximate solution is derived. The numerical result shows that the presented approximation solution is effective.展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solutio...Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.展开更多
Based on the ABAQUS/Explicit finite element method,the forming force changing trend of deep drawing test for 6A16 aluminum alloy plate after pre-aging and storage at room temperature for one month was simulated under ...Based on the ABAQUS/Explicit finite element method,the forming force changing trend of deep drawing test for 6A16 aluminum alloy plate after pre-aging and storage at room temperature for one month was simulated under friction coefficient ranging from 0 to 0.22.The lubricants selected for the tests were mechanical oil,butter and dry film lubricant,and the friction coefficient of these lubricants were 0.05,0.10 and 0.15,respectively.Microstructural evolution of 6 A16 aluminum alloy plate during drawing forming was investigated by OM,SEM and EBSD.The results showed that,with the increase of friction coefficient,the stress,strain and deformation degree in deformation zone increased,while the grain size in deformation zone decreased.Thus,the hardness of the cup-typed component increased with the increase of friction coefficient.Butter-lubricated cups had the highest tensile strength and yield strength after paint-bake cycle.The combination of simulation results and microstructure analysis of 6A16 aluminum alloy plate after drawing forming indicates that the appropriate lubricant is butter.展开更多
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant...In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.展开更多
We develop the interpolated finite element method to solve second-order hy-perbolic equations. The standard linear finite element solution is used to generate a newsolution by quadratic interpolation over adjacent ele...We develop the interpolated finite element method to solve second-order hy-perbolic equations. The standard linear finite element solution is used to generate a newsolution by quadratic interpolation over adjacent elements. We prove that this interpo-lated finite element solution has superconvergence. This method can easily be applied togenerating more accurate gradient either locally or globally, depending on the applications.This method is also completely vectorizable and parallelizable to take the advantages ofmodern computer structures. Several numerical examples are presented to confirm ourtheoretical analysis.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring pla...In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.展开更多
We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,ex...We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.展开更多
基金P.Sun was supported by NSF Grant DMS-1418806C.S.Zhang was partially supported by the National Key Research and Development Program of China(Grant No.2016YFB0201304)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant Nos.91430215,91530323)the Key Research Program of Frontier Sciences of CAS.
文摘The distributed Lagrange multiplier/fictitious domain(DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients.The semi-and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface,where the arbitrary Lagrangian-Eulerian(ALE)technique is employed to deal with the moving and immersed subdomain.Stability and optimal convergence properties are obtained for both schemes.Numerical experiments are carried out for different scenarios of jump coefficients,and all theoretical results are validated.
文摘<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>
文摘In this paper we present the Projection Based Interpolation (PBI) technique for construction of continuous approximation of MRI scan data of the human head. We utilize the result of the PBI algorithm to perform three dimensional (3D) Finite Element Method (FEM) simulations of the acoustics of the human head. The computational problem is a multi-physics problem modeled as acoustics coupled with linear elasticity. The computational grid contains tetrahedral finite elements with the number of equations and polynomial orders of approximation varying locally on finite element edges, faces, and interiors. We utilize our own out-of-core parallel direct solver for the solution of this multi-physics problem. The solver minimizes the memory usage by dumping out all local systems from all nodes of the entire elimination tree during the elimination phase.
基金The work was supported in part by the Special Funds of State Major Basic Research Projects (Grant No.1999032804) by scientific Research Fund of Hunan Provincial Education Department (03C508).
文摘In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
基金The research presented in this paper has been financially supported by the Croatian Science Foundation(Grants HRZZ-IP-11-2013-1631 and HRZZ-IP-2018-01-1732)Young Researchers'Career Development—Training of Doctoral Students,as well as a French Government Scholarship.
文摘Quadrilateral finite elements for linear micropolar continuum theory are developed using linked interpolation.In order to satisfy convergence criteria,the newly presented finite elements are modified using the Petrov-Galerkin method in which different interpolation is used for the test and trial functions.The elements are tested through four numerical examples consisting of a set of patch tests,a cantilever beam in pure bending and a stress concentration problem and compared with the analytical solution and quadrilateral micropolar finite elements with standard Lagrangian interpolation.In the higher-order patch test,the performance of the first-order element is significantly improved.However,since the problems analysed are already describable with quadratic polynomials,the enhancement due to linked interpolation for higher-order elements could not be highlighted.All the presented elements also faithfully reproduce the micropolar effects in the stress concentration analysis,but the enhancement here is negligible with respect to standard Lagrangian elements,since the higher-order polynomials in this example are not needed.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571046, 10371038)
文摘For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has the accuracy O(h^min{2k,k+4}) The theoretical analysis coincides the reported numerical results.
文摘In this work, investigation of particle rebound characteristics due to impact with surface of a target material is presented. The rebound of a spherical particle after impact on a planar surface was analyzed in detail. Specifically, the coefficient of restitution of the particle under various impact conditions was investigated numerically. This study has been conducted by carrying out a series of FEM-based (finite element method) simulations using ANSYS Autodyn software. First, a summary about the state of the art and the theoretical models for the elastic collisions were reviewed. Afterwards, the impact of an aluminum oxide particle on an aluminum alloy target surface was modeled. Using the Autodyn tool, the results were compared and validated by the experimental results of Gorham and Kharaz [1]. Selection of an appropriate equation of state (EOS) and a strength model for each material had a strong effect on the results. For both materials, the Shock EOS was applied for the final simulations. As the strength model, the Johnson-Cook and the elastic model were used, respectively. The agreement of the obtained numerical results with the experimental data confirmed that the proposed model can precisely predict the real behavior of the particle after the impact, when the material models are properly chosen. Furthermore, the effects of impact velocity and impact angle on the rebound characteristics of the particle were analyzed in detail. It was found that the selection of the exact value of friction coefficient has a drastic effect on the prediction of restitution coefficient values, especially the tangential restitution coefficient.
文摘This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.
基金This work was supported by National Science Foundation and China State Major Key Project for Basic Research
文摘We’ll consider the model of two-phase compressible miscible displacement in porous media which includes molecular diffusion and dispersion in one dimensional space. Time-discretization procedure is established and analysed. The optimal error estimate in L2 norm is proved by introducing a new interpolation operator R.
基金Project supported by the National Natural Science Foundation of China(No.10590353)the Science Research Project of National University of Defense Technology(No.JC09-02-05)
文摘The purpose of this paper is to solve nonselfadjoint elliptic problems with rapidly oscillatory coefficients. A two-order and two-scale approximate solution expression for nonselfadjoint elliptic problems is considered, and the error estimation of the twoorder and two-scale approximate solution is derived. The numerical result shows that the presented approximation solution is effective.
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
基金supported by the National Natural Science Foundation of China (Grants 11332004, 11572071)the Program for Changjiang Scholars and Innovative Research Team in Dalian University of Technology (PCSIRT)+2 种基金111 Project (Grant B14013)the CATIC Industrial Production Projects (Grant CXY2013DLLG32)the Fundamental Research Funds for the Central Universities (Grant DUT15ZD101)
文摘Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.
基金Funded by the National Key Research and Development Program of China(No.2016YFB0300805).
文摘Based on the ABAQUS/Explicit finite element method,the forming force changing trend of deep drawing test for 6A16 aluminum alloy plate after pre-aging and storage at room temperature for one month was simulated under friction coefficient ranging from 0 to 0.22.The lubricants selected for the tests were mechanical oil,butter and dry film lubricant,and the friction coefficient of these lubricants were 0.05,0.10 and 0.15,respectively.Microstructural evolution of 6 A16 aluminum alloy plate during drawing forming was investigated by OM,SEM and EBSD.The results showed that,with the increase of friction coefficient,the stress,strain and deformation degree in deformation zone increased,while the grain size in deformation zone decreased.Thus,the hardness of the cup-typed component increased with the increase of friction coefficient.Butter-lubricated cups had the highest tensile strength and yield strength after paint-bake cycle.The combination of simulation results and microstructure analysis of 6A16 aluminum alloy plate after drawing forming indicates that the appropriate lubricant is butter.
基金supported by the National Natural Science Foundation of China (60533060, 10672032, 10726067)Science Foundation of Dalian University of Technology (SFDUT07001)
文摘In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.
基金This research is supported in part by NSF Grant No.DMS-8922865,and by Funding from the Institute of Scientific Computations at the University of Wyoming through NSF Grant.
文摘We develop the interpolated finite element method to solve second-order hy-perbolic equations. The standard linear finite element solution is used to generate a newsolution by quadratic interpolation over adjacent elements. We prove that this interpo-lated finite element solution has superconvergence. This method can easily be applied togenerating more accurate gradient either locally or globally, depending on the applications.This method is also completely vectorizable and parallelizable to take the advantages ofmodern computer structures. Several numerical examples are presented to confirm ourtheoretical analysis.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.59575007).
文摘In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.
基金supported by the National Natural Science Foundation of China(11971276,12171287)Natural Science Foundation of Shandong Province(ZR2016JL004)+1 种基金supported by the China Postdoctoral Science Foundation(2021TQ0017,2021M700244)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210019)。
文摘We present a mathematical and numerical study for a pointwise optimal control problem governed by a variable-coefficient Riesz-fractional diffusion equation.Due to the impact of the variable diffusivity coefficient,existing regularity results for their constantcoefficient counterparts do not apply,while the bilinear forms of the state(adjoint)equation may lose the coercivity that is critical in error estimates of the finite element method.We reformulate the state equation as an equivalent constant-coefficient fractional diffusion equation with the addition of a variable-coefficient low-order fractional advection term.First order optimality conditions are accordingly derived and the smoothing properties of the solutions are analyzed by,e.g.,interpolation estimates.The weak coercivity of the resulting bilinear forms are proven via the Garding inequality,based on which we prove the optimal-order convergence estimates of the finite element method for the(adjoint)state variable and the control variable.Numerical experiments substantiate the theoretical predictions.