In this paper, the authers introduce certain entire exponential type interpolation operatots and study the convergence problem of these operatots in c(R) or Lp(R) (1≤p<∞)
Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpol...Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.展开更多
Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based o...Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.展开更多
This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means...This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means of continuous modulus, Hardy-Littlewood maximal function, convexity of N function and Jensen inequality.展开更多
By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive...By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.展开更多
In this paper some decomposition theorems for classical weighted Orlicz spaces and Bers-Orlicz spaces are established. As applications of these decomposition theorems some estimates about the growth of the Taylor coef...In this paper some decomposition theorems for classical weighted Orlicz spaces and Bers-Orlicz spaces are established. As applications of these decomposition theorems some estimates about the growth of the Taylor coefficients of the functions in Bers-Orlicz spaces are given.展开更多
This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes...This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes,where the kernels are PF densities.Moreover,the exact error of approximation of a convolution class with interpolation cardinal splines is determined. The exact values of average n-Kolmogorov widths are obtained for the convolution class.展开更多
Presents information on a study which analyzed superapproximation properties for the interpolation operator of projection type on two-dimensional domain. Discussion on the interpolation operator of projection type and...Presents information on a study which analyzed superapproximation properties for the interpolation operator of projection type on two-dimensional domain. Discussion on the interpolation operator of projection type and its superapproximation properties; Superconvergence of Ritz projection; Proof and applications of the superconveregence of Ritz-Volterra projection.展开更多
In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial...In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called 'contractivity' of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.展开更多
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization...We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.展开更多
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminor...In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green's function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.展开更多
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
文摘In this paper, the authers introduce certain entire exponential type interpolation operatots and study the convergence problem of these operatots in c(R) or Lp(R) (1≤p<∞)
文摘Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.
文摘Extending the results of [4] in the univariate case, in this paper we prove that the bivariate interpolation polynomials of Hermite-Fejér based on the Chebyshev nodes of the first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1, and those of bivariate Shepard operators, have the property of partial preservation of global smoothness, with respect to various bivariate moduli of continuity.
基金Supported by the National Natural Science Foundation of China(liT61055) Supported by the Inner Mongolia Autonomous Region Natural Science Foundation of China(2017MS0123)
文摘This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means of continuous modulus, Hardy-Littlewood maximal function, convexity of N function and Jensen inequality.
文摘By combining the classical appropriate functions “1, x, x 2” with the method of multiplier enlargement, this paper establishes a theorem to approximate any unbounded continuous functions with modified positive linear operators. As an example, Hermite Fejér interpolation polynomial operators are analysed and studied, and a general conclusion is obtained.
文摘In this paper some decomposition theorems for classical weighted Orlicz spaces and Bers-Orlicz spaces are established. As applications of these decomposition theorems some estimates about the growth of the Taylor coefficients of the functions in Bers-Orlicz spaces are given.
文摘This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes,where the kernels are PF densities.Moreover,the exact error of approximation of a convolution class with interpolation cardinal splines is determined. The exact values of average n-Kolmogorov widths are obtained for the convolution class.
基金Supported by the Foundation of National Education Department for Key Teachers in Chinese University.
文摘Presents information on a study which analyzed superapproximation properties for the interpolation operator of projection type on two-dimensional domain. Discussion on the interpolation operator of projection type and its superapproximation properties; Superconvergence of Ritz projection; Proof and applications of the superconveregence of Ritz-Volterra projection.
文摘In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called 'contractivity' of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11271145), the Foundation for Talent Introduction of Guangdong Provincial University, the Specialized Research Fund for the Doctoral Program of Higher Education (20114407110009), and the Project of Department of Education of Guangdong Province (2012KJCX0036).
文摘We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.
基金supported by Natural Science Foundation of Ningbo City (Grant No. 2008A610020)National Natural Science Foundation of China (Grant No. 10671065)the Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 07C576, 03C212)
文摘In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green's function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.