期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Non-invasive assessment for intratumoural distribution of interstitial fluid flow
1
作者 Jun Zhao Yupeng Cao +1 位作者 Wentao Liu Dong Han 《Magnetic Resonance Letters》 2023年第4期286-297,共12页
Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to dev... Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to develop a novel technology called interstitial flow velocity-MRI.The interstitial flow velocity-MRI sequence consists of a dual inversion recovery preparation and an improved stimulated echo sequence(ISTE)combined with phase-contrast MRI.A homemade flow phantom was used to assess the feasibility and sensitivity of interstitial flow velocity-MRI.In addition,xenografts of female BALB/c mouse models of 4T1 breast cancer administered losartan(40 mg/kg)or saline(n?6)were subjected to imaging on a 7.0 T scanner to assess the in vivo interstitial fluid flow velocity.The results showed a significant correlation(P<0.001)between the theoretical velocities and velocities measured using the flow phantom.Interstitial flow velocity-MRI could detect a velocity as low as 10.21±2.65 mm/s with a spatial resolution of 0.313 mm.The losartan group had a lower mean interstitial fluid velocity than the control group(85±16 vs 113±24 mm/s).In addition,compared to the saline treatment,losartan treatment reduced the proportion of collagen fibres by 10%and 12%in the Masson and Sirius red staining groups,respectively.Interstitial flow velocity-MRI has the potential to determine interstitial fluid flow velocity non-invasively and exhibits an intuitive velocity map. 展开更多
关键词 interstitial fluid flow interstitial flow velocity-MRI LOSARTAN Slow flows Tumour microenvironment
下载PDF
Interstitial fluid flow:simulation of mechanical environment of cells in the interosseous membrane 被引量:2
2
作者 Wei Yao Guang-Hong Ding 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第4期602-610,共9页
In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow veloci... In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the ceils. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow. 展开更多
关键词 interstitial fluid flow Porous media. Numericalsimulation - Acupoint Sheer stress
下载PDF
Fundamental kinematics laws of interstitial fluid flows on vascular walls
3
作者 Yajun Yin Hongyi Li +2 位作者 Gang Peng Xiaobin Yu Yiya Kong 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第3期146-150,共5页
In the previous studies,the phenomenon that the interstitial fluid(ISF)can flow along tunica adventitia of the arteries and veins in both human and animal bodies was reported.On the basis of these studies,this paper a... In the previous studies,the phenomenon that the interstitial fluid(ISF)can flow along tunica adventitia of the arteries and veins in both human and animal bodies was reported.On the basis of these studies,this paper aims to:(i)summarize the basic properties of the ISF flows in the walls of arteries and veins,(ii)combine the basic properties with axiomaticism and abstract the axiom for ISF flows,and(iii)propose three fundamental laws of the ISF flow,(i.e.,the existence law,the homotropic law and the reverse law).The three laws provide solid theoretical basement for exploring the kinematic patterns of interstitial fluid flow in the cardiovascular system. 展开更多
关键词 Vascular walls interstitial fluid flow Essential flowing properties Fundamental kinematics laws
下载PDF
Analytic solutions of the interstitial fluid flow models 被引量:2
4
作者 姚伟 李亚贝 陈南 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第5期683-694,共12页
In this paper, we present the analytic solutions of several continuum porous media models that describe the interstitial fluid flow in the interosseous membrane. We first compare the results of the Brinkman, Stokes an... In this paper, we present the analytic solutions of several continuum porous media models that describe the interstitial fluid flow in the interosseous membrane. We first compare the results of the Brinkman, Stokes and Darcy systems in describing the isotropic interstitial fluid flows. Our calculations show that the Stokes equations can well approximate the Brinkman equations when the Darcy number Da 〉 0.2, while the Darcy model is an appropriate approximation to the Brinkman model in the interosseous membrane when Da 〈 2 × 10-4. Yet, in most cases, the anisotropy dominates the interstitial fluid. Therefore, we build an anisotropic Darcy model and show that an isotropic model can be used as a suitable approximation when the ratio between the transverse and longitudinal permeabilities is no larger than 20. Lastly, we take the blood flow in capillaries into consideration as well and introduce the coupled Stokes-Darcy system to describe the cases comprising both the capillary and the interstitial domain. Our results reveal that the profile of the interface exchange flow is not exactly in the linear form as was widely adopted in the numerical simulation, instead, the flux near the artery and the vein is more significant, which in turn results in the increase of the maximum horizontal velocity in the interstitial space while the outflow rate remains the same. 展开更多
关键词 interstitial fluid flow Brinkman system Darcy system Stokes system coupled Stokes-Darcy system
原文传递
Dynamics of Calcium Signal and Leukotriene C_(4) Release in Mast Cells Network Induced by Mechanical Stimuli and Modulated by Interstitial Fluid Flow 被引量:1
5
作者 Wei Yao Hongwei Yang +1 位作者 Yabei Li Guanghong Ding 《Advances in Applied Mathematics and Mechanics》 SCIE 2016年第1期67-81,共15页
Mast cells(MCs)play an important role in the immune system.Through connective tissues,mechanical stimuli activate intracellular calcium signaling pathways,induce a variety of mediators including leukotriene C4(LTC4)re... Mast cells(MCs)play an important role in the immune system.Through connective tissues,mechanical stimuli activate intracellular calcium signaling pathways,induce a variety of mediators including leukotriene C4(LTC4)release,and affect MCs’microenvironment.This paper focuses on MCs’intracellular calcium dynamics and LTC4 release responding to mechanical stimuli,explores signaling pathways in MCs and the effect of interstitial fluid flow on the transport of biological messengers and feedback in the MCs network.We use a mathematical model to show that(i)mechanical stimuli including shear stress induced by interstitial fluid flow can activate mechano-sensitive(MS)ion channels on MCs’membrane and allow Ca^(2+)entry,which increases intracellular Ca^(2+)concentration and leads to LTC4 release;(ii)LTC4 in the extracellular space(ECS)acts on surface cysteinyl leukotriene receptors(LTC4R)on adjacent cells,leading to Ca^(2+)influx through Ca^(2+)release-activated Ca^(2+)(CRAC)channels.An elevated intracellular Ca^(2+)concentration further stimulates LTC4 release and creates a positive feedback in the MCs network.The findings of this study may facilitate our understanding of the mechanotransduction process in MCs induced by mechanical stimuli,contribute to understanding of interstitial flow-related mechanobiology in MCs network,and provide a methodology for quantitatively analyzing physical treatment methods including acupuncture and massage in traditional Chinese medicine(TCM). 展开更多
关键词 Mast cells Ca^(2+)signaling LTC4 release interstitial fluid flow NETWORK
原文传递
An analytical poroelastic model for laboratorial mechanical testing of the articular cartilage (AC) 被引量:1
6
作者 Xiaogang WU Kuijun CHEN +5 位作者 Zhaowei WANG Ningning WANG Teng ZHAO Yanan XUE Yanqin WANG Weiyi CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期813-828,共16页
The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analyt... The articular cartilage (AC) can be seen as a biphasic poroelastic material. The cartilage deformation under compression mainly leads to an interstitial fluid flow in the porous solid phase. In this paper, an analytical poroelastic model for the AC under laboratorial mechanical testing is developed. The solutions of interstitial fluid pressure and velocity are obtained. The results show the following facts. (i) Both the pressure and fluid velocity amplitudes are proportional to the strain loading amplitude. (ii) Both the amplitudes of pore fluid pressure and velocity in the AC depend more on the loading amplitude than on the frequency. Thus, in order to obtain the considerable fluid stimulus for the AC cell responses, the most effective way is to increase the loading amplitude rather than the frequency. (iii) Both the interstitiM fluid pressure and velocity are strongly affected by permeability variations. This model can be used in experimental tests of the parameters of AC or other poroelastic materials, and in research of mechanotransduction and injury mechanism involved interstitial fluid flow. 展开更多
关键词 articular cartilage (AC) poroelasticity interstitial fluid flow laboratorialmechanical test injury mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部