Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ...Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.展开更多
To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic prior...To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.展开更多
In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function...In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function with adjustable entropy function.By constructing an interval extension of adjustable entropy function an d some region deletion test rules,a new interval algorithm is presented.The rele vant properties are proven.The minimax value and the localization of the minimax points of the problem can be obtained by this method. This method can overcome the flow problem in the maximum entropy algorithm.Both theoretical and numerica l results show that the method is reliable and efficient.展开更多
An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form t...An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.展开更多
This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new str...This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.展开更多
Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is ...Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is still a high rate of false negatives in detecting these complex attack patterns.To solve this problem,we use interval temporal logic formulae to describe concurrent attacks and piecewise attacks.On this basis,we formalize a novel algorithm for intrusion detection based on model checking interval temporal logic.Compared with the method based on model checking linear temporal logic,the new algorithm can find unknown succinct attacks.The simulation results show that the new method can effectively reduce the false negative rate of concurrent attacks and piecewise attacks.展开更多
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
Based on the interval analysis,a practical interval algorithm is developed for finding all global minimizers of a nonsmooth function on a closed domain XR n, which is given by defining a special derivative to the func...Based on the interval analysis,a practical interval algorithm is developed for finding all global minimizers of a nonsmooth function on a closed domain XR n, which is given by defining a special derivative to the function and using the interval inclusion of derivative. Both theoretical analysis and numerical results show that this method is practical and effective.展开更多
In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet c...In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet coefficient.展开更多
In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Boun...In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Bound algorithm is given,which does not need to solve a sequence of unconstrained problems. Global convergence is proved. Numerical examples show that this algorithm is efficient.展开更多
The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the p...The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the parameters. The approximate joint confidence intervals for the parameters, the approximate confidence regions and percentile bootstrap intervals of confidence are discussed, and several Markov chain Monte Carlo (MCMC) techniques are also presented. The parts of mean square error (MSEs) and credible intervals lengths, the estimators of Bayes depend on non-informative implement more effective than the maximum likelihood estimates (MLEs) and bootstrap. Comparing the models, the MSEs, average confidence interval lengths of the MLEs, and Bayes estimators for parameters are less significant for censored models.展开更多
This paper presents an efficient parallel algorithm for the shortest-path problem in interval graph for computing shortest-paths in a weighted interval graph that runs in O(n) time with n intervals in a graph. A linea...This paper presents an efficient parallel algorithm for the shortest-path problem in interval graph for computing shortest-paths in a weighted interval graph that runs in O(n) time with n intervals in a graph. A linear processor CRCW algorithm for determining the shortest-paths in an interval graphs is given.展开更多
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ...The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Interval constraint propagation (ICP) algorithms allow to solve problems described as constraint satisfaction problems (CSP). ICP has been successfully applied to vehicle localization in the last few years. Once the l...Interval constraint propagation (ICP) algorithms allow to solve problems described as constraint satisfaction problems (CSP). ICP has been successfully applied to vehicle localization in the last few years. Once the localization problem has been stated, a large class of ICP solvers can be used. This paper compares a few ICP algorithms, using the same experimental data, in order to rank their performances in terms of accuracy and computing time.展开更多
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82071426,81873784Clinical Cohort Construction Program of Peking University Third Hospital,No.BYSYDL2019002(all to DF)。
文摘Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005408)
文摘To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.
基金Supported by the National Natural Science Foundation of China(50 1 740 51 )
文摘In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function with adjustable entropy function.By constructing an interval extension of adjustable entropy function an d some region deletion test rules,a new interval algorithm is presented.The rele vant properties are proven.The minimax value and the localization of the minimax points of the problem can be obtained by this method. This method can overcome the flow problem in the maximum entropy algorithm.Both theoretical and numerica l results show that the method is reliable and efficient.
文摘An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.
基金Grant from LIESMARS (No.WKL(06)0302)the Basic Research Grant of CASM(No.G7721)
文摘This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.
基金supported by National Natural Science Foundation of China under Grant No. 61003079
文摘Model checking based on linear temporal logic reduces the false negative rate of misuse detection.However,linear temporal logic formulae cannot be used to describe concurrent attacks and piecewise attacks.So there is still a high rate of false negatives in detecting these complex attack patterns.To solve this problem,we use interval temporal logic formulae to describe concurrent attacks and piecewise attacks.On this basis,we formalize a novel algorithm for intrusion detection based on model checking interval temporal logic.Compared with the method based on model checking linear temporal logic,the new algorithm can find unknown succinct attacks.The simulation results show that the new method can effectively reduce the false negative rate of concurrent attacks and piecewise attacks.
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
文摘Based on the interval analysis,a practical interval algorithm is developed for finding all global minimizers of a nonsmooth function on a closed domain XR n, which is given by defining a special derivative to the function and using the interval inclusion of derivative. Both theoretical analysis and numerical results show that this method is practical and effective.
文摘In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet coefficient.
基金This research is supported by the National Science Foundation of China.
文摘In order to solve the constrained global optimization problem,we use penalty functions not only on constraints but also on objective function. Then within the framework of interval analysis,an interval Branch-and-Bound algorithm is given,which does not need to solve a sequence of unconstrained problems. Global convergence is proved. Numerical examples show that this algorithm is efficient.
文摘The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the parameters. The approximate joint confidence intervals for the parameters, the approximate confidence regions and percentile bootstrap intervals of confidence are discussed, and several Markov chain Monte Carlo (MCMC) techniques are also presented. The parts of mean square error (MSEs) and credible intervals lengths, the estimators of Bayes depend on non-informative implement more effective than the maximum likelihood estimates (MLEs) and bootstrap. Comparing the models, the MSEs, average confidence interval lengths of the MLEs, and Bayes estimators for parameters are less significant for censored models.
文摘This paper presents an efficient parallel algorithm for the shortest-path problem in interval graph for computing shortest-paths in a weighted interval graph that runs in O(n) time with n intervals in a graph. A linear processor CRCW algorithm for determining the shortest-paths in an interval graphs is given.
文摘The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘Interval constraint propagation (ICP) algorithms allow to solve problems described as constraint satisfaction problems (CSP). ICP has been successfully applied to vehicle localization in the last few years. Once the localization problem has been stated, a large class of ICP solvers can be used. This paper compares a few ICP algorithms, using the same experimental data, in order to rank their performances in terms of accuracy and computing time.
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.