The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.展开更多
Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on th...Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.展开更多
The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to t...The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.展开更多
In this paper, we investigate the reliability analysis of a powerloom plant by using interval valued intuitionistic fuzzy sets (IVIFS). Herein, we modeled a powerloom plant as a gracefully degradable system having two...In this paper, we investigate the reliability analysis of a powerloom plant by using interval valued intuitionistic fuzzy sets (IVIFS). Herein, we modeled a powerloom plant as a gracefully degradable system having two units A(n) and B(m) connected in series. The reliability ofncomponents of unitAandmcomponents of unitBis assumed to be an IVIFS defined over the universe of discourse [0, 1]. Thus, the reliability of the system obtained is an IVIFS that covers the inherited uncertainty in data collection and reliability evaluation of a powerloom plant.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me...Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.展开更多
The character and an algorithm about DRVIP( discrete random variable with interval probability) and the secured kind DRVFP (discrete random variable with crisp event-fuzzy probability) are researched. Using the fu...The character and an algorithm about DRVIP( discrete random variable with interval probability) and the secured kind DRVFP (discrete random variable with crisp event-fuzzy probability) are researched. Using the fuzzy resolution theorem, the solving mathematical expectation of a DRVFP can be translated into solving mathematical expectation of a series of RVIP. It is obvious that solving mathematical expectation of a DRVIP is a typical linear programming problem. A very functional calculating formula for solving mathematical expectation of DRVIP was obtained by using the Dantzig's simplex method. The example indicates that the result obtained by using the functional calculating formula fits together completely with the result obtained by using the linear programming method, but the process using the formula deduced is simpler.展开更多
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set...Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.展开更多
Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece...Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.展开更多
Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of th...Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.展开更多
By using the unsymmetrical scale instead of the symmetrical scale,the multiplicative intuitionistic fuzzy sets(MIFSs) reflect our intuition more objectively.Each element in a MIFS is expressed by an ordered pair which...By using the unsymmetrical scale instead of the symmetrical scale,the multiplicative intuitionistic fuzzy sets(MIFSs) reflect our intuition more objectively.Each element in a MIFS is expressed by an ordered pair which is called a multiplicative intuitionistic fuzzy number(MIFN)and is based on the unbalanced scale(i.e.,Saaty’s 1-9 scale).In order to describe the derivatives and differentials for multiplicative intuitionistic fuzzy information more comprehensively,in this paper,we firstly propose two new basic operational laws for MIFNs,which are the subtraction law and the division law.Secondly,we describe the change values of MIFNs when considering them as variables,classify these change values based on the basic operational laws for MIFNs,and depict the convergences of sequences of MIFNs by the subtraction and division laws.Finally,we focus on the multiplicative intuitionistic fuzzy functions and derive some basic results related to their continuities,derivatives and differentials,and also give their application in selecting the configuration of a computer.展开更多
During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal fu...During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal function are transformed. Secondly, when the heat conduct parameters are the fuzzy numbers and the temperature boundary conditions are the random numbers, interval equations of the heat conduction are presented. Thirdly, by comparison of the interval results, the result in the interval analysis is larger than that in the confidence interval. Moreover the error expecting equation is presented. Finally, with upper (lower) approximation in rough set theory, a new method of the interval analysis to deal with the stability heat conduction is presented.展开更多
针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集...针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集和云模型构建了一种改进的FMEA风险评估方法。首先,引入区间值直觉模糊集(IVIFS)来描述专家评价信息的复杂性和不确定性,通过运用区间值直觉模糊熵,计算专家权重和风险因子的权重;其次,采用云模型的方法,通过比较各支持云模型和反对云模型与正、负理想云模型的正、负相似度,获得故障模式评价值的综合相似度,通过对综合相似度大小排序得到各故障模式风险排序;最后,以自动扶梯的梯级、踏板和胶带风险评估为例进行分析,验证该评估方法的实用性和可行性。展开更多
基金funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
文摘The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.
文摘Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.
基金supported by the National Natural Science Foundation of China(61373174)
文摘The intuitionistic fuzzy set(IFS) based on fuzzy theory,which is of high efficiency to solve the fuzzy problem, has been introduced by Atanassov. Subsequently, he pushed the research one step further from the IFS to the interval valued intuitionistic fuzzy set(IVIFS). On the basis of fuzzy set(FS), the IFS is a generalization concept. And the IFS is generalized to the IVIFS.In this paper, the definition of the sixth Cartesian product over IVIFSs is first introduced and its some properties are explored.We prove some equalities based on the operation and the relation over IVIFSs. Finally, we present one geometric interpretation and a numerical example of the sixth Cartesian product over IVIFSs.
文摘In this paper, we investigate the reliability analysis of a powerloom plant by using interval valued intuitionistic fuzzy sets (IVIFS). Herein, we modeled a powerloom plant as a gracefully degradable system having two units A(n) and B(m) connected in series. The reliability ofncomponents of unitAandmcomponents of unitBis assumed to be an IVIFS defined over the universe of discourse [0, 1]. Thus, the reliability of the system obtained is an IVIFS that covers the inherited uncertainty in data collection and reliability evaluation of a powerloom plant.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(70625005)
文摘Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
文摘The character and an algorithm about DRVIP( discrete random variable with interval probability) and the secured kind DRVFP (discrete random variable with crisp event-fuzzy probability) are researched. Using the fuzzy resolution theorem, the solving mathematical expectation of a DRVFP can be translated into solving mathematical expectation of a series of RVIP. It is obvious that solving mathematical expectation of a DRVIP is a typical linear programming problem. A very functional calculating formula for solving mathematical expectation of DRVIP was obtained by using the Dantzig's simplex method. The example indicates that the result obtained by using the functional calculating formula fits together completely with the result obtained by using the linear programming method, but the process using the formula deduced is simpler.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
文摘Intuitionistic Fuzzy Set (IFS) can be used as a general tool for modeling problems of decision making under uncertainty where, the degree of rejection is defined simultaneously with the degree of acceptance of a piece of information in such a way that these degrees are not complement to each other. Accordingly, an attempt is made to solve intuitionistic fuzzy linear programming problems using a technique based on an earlier technique proposed by Zimmermann to solve fuzzy linear programming problem. Our proposed technique does not require the existing ranking of intuitionistic fuzzy numbers. This method is also different from the existing weight assignment method or the Angelov’s method. A comparative study is undertaken and interesting results have been presented.
文摘Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.
基金supported in part by the National Natural Science Foundation of China(71571123,71771155)
文摘By using the unsymmetrical scale instead of the symmetrical scale,the multiplicative intuitionistic fuzzy sets(MIFSs) reflect our intuition more objectively.Each element in a MIFS is expressed by an ordered pair which is called a multiplicative intuitionistic fuzzy number(MIFN)and is based on the unbalanced scale(i.e.,Saaty’s 1-9 scale).In order to describe the derivatives and differentials for multiplicative intuitionistic fuzzy information more comprehensively,in this paper,we firstly propose two new basic operational laws for MIFNs,which are the subtraction law and the division law.Secondly,we describe the change values of MIFNs when considering them as variables,classify these change values based on the basic operational laws for MIFNs,and depict the convergences of sequences of MIFNs by the subtraction and division laws.Finally,we focus on the multiplicative intuitionistic fuzzy functions and derive some basic results related to their continuities,derivatives and differentials,and also give their application in selecting the configuration of a computer.
文摘During the analysis of stability heat conduction in the composite tubes, firstly, when the temperature boundary conditions are the random conditions, equations of the mean values and variances of the random thermal function are transformed. Secondly, when the heat conduct parameters are the fuzzy numbers and the temperature boundary conditions are the random numbers, interval equations of the heat conduction are presented. Thirdly, by comparison of the interval results, the result in the interval analysis is larger than that in the confidence interval. Moreover the error expecting equation is presented. Finally, with upper (lower) approximation in rough set theory, a new method of the interval analysis to deal with the stability heat conduction is presented.
文摘针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集和云模型构建了一种改进的FMEA风险评估方法。首先,引入区间值直觉模糊集(IVIFS)来描述专家评价信息的复杂性和不确定性,通过运用区间值直觉模糊熵,计算专家权重和风险因子的权重;其次,采用云模型的方法,通过比较各支持云模型和反对云模型与正、负理想云模型的正、负相似度,获得故障模式评价值的综合相似度,通过对综合相似度大小排序得到各故障模式风险排序;最后,以自动扶梯的梯级、踏板和胶带风险评估为例进行分析,验证该评估方法的实用性和可行性。