Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is estab...Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.展开更多
In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the...In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.展开更多
It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that...It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the Hurwitz-Schur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, i. e. 2-D Laplace-Z transformation, has been proposed to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.展开更多
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variable...A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.展开更多
A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignori...A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignoring the dependency phenomenon. Instead of capturing the extremum of the structural static responses in the entire space spanned by uncertain parameters, their lower and upper bounds are calculated at the minimal and maximal point vectors obtained dimension by dimension with respect to uncertain parameters based on the Legend orthogonal polynomial approximation, overcoming the potential engineering insignificance caused by the optimization strategy. After performing its theoretical analysis, both the accuracy and applicability of the proposed method are verified.展开更多
In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex ...In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice,thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method.The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint.To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.展开更多
In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and cre...In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.展开更多
An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the ...An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the perturbation,the method for interval dynamic response analysis is derived.The interval optimization problem is transformed into a corresponding de- terministic one.Because the mean values and the uncertainties of the interval parameters can be elected design variables,more information of the optimization results can be obtained by the present method than that obtained by the deterministic one.The present method is implemented for a truss structure.The numerical results show that the method is effective.展开更多
How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. ...How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. Aiming to the limitations of traditional interval numbers in measuring the trustworthiness of service, this paper proposed a novel ser- vice recommendation approach using the interval numbers of four parameters (INF) for potential users. In this approach, a trustworthiness cloud model was established to identify the eigenvalue of INF via backward cloud generator, and a new formula of INF possibility degree based on geometrical anal- ysis was presented to ensure the high calculation precision. In order to select the highly valuable QoE evaluations, the similarity of client-side feature between potential user and consumers was calculated, and the multi-attributes trustwor- thiness values were aggregated into INF by the fuzzy ana- lytic hierarchy process method. On the basis of ranking INF, the sort values of trustworthiness of candidate services were obtained, and the trustworthy services were chosen to recommend to potential user. The experiments based on a real-world dataset showed that it can improve the recommendation accuracy of trustworthy services compared to other approaches, which contributes to solving cold start and information overload problem in service recommendation.展开更多
In this paper, a two-species harvesting model has been considered and developed a solu- tion procedure which is able to calculate the equilibrium points of the model where some biological parameters of the model are i...In this paper, a two-species harvesting model has been considered and developed a solu- tion procedure which is able to calculate the equilibrium points of the model where some biological parameters of the model are interval numbers. A parametric mathematical pro- gram is formulated to find the biological equilibrium of the model for different values of parameters. This interval-valued problem is converted into an equivalent crisp model using interval mathematics. The main advantage of the proposed procedure is that dif- ferent characteristics of the model can be presented in a single framework. Analytically, the existence of steady state and stabilities are looked into. Using mathematical soft- ware, the model is illustrated and the results are obtained and presented in tabular and graphical forms.展开更多
基金the National Natural Science Foundation of China(Nos.12272172 and 11847009)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB580005)+1 种基金the Youth Talent Promotion Project from China Association for Science and Technology(No.2022QNRC001)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Uncertainties are unavoidable in practical engineering,and phononic crystals are no exception.In this paper,the uncertainties are treated as the interval parameters,and an interval phononic crystal beam model is established.A perturbation-based interval finite element method(P-IFEM)and an affine-based interval finite element method(A-IFEM)are proposed to study the dynamic response of this interval phononic crystal beam,based on which an interval vibration transmission analysis can be easily implemented and the safe bandgap can be defined.Finally,two numerical examples are investigated to demonstrate the effectiveness and accuracy of the P-IFEM and A-IFEM.Results show that the safe bandgap range may even decrease by 10%compared with the deterministic bandgap without considering the uncertainties.
基金supported by the National Natural Science Foundation of China (Grants 11002013, 11372025)the Defense Industrial Technology Development Program (Grants A0820132001, JCKY2013601B)+1 种基金the Aeronautical Science Foundation of China (Grant 2012ZA51010)111 Project (Grant B07009) for support
文摘In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.
基金This project was supported by National Natural Science Foundation of China (69971002).
文摘It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the Hurwitz-Schur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, i. e. 2-D Laplace-Z transformation, has been proposed to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project (B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.
基金supported by the Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)‘111’ Project(Grant No.B07009)the National Natural Science Foundation of China(Grant Nos.90816024 and 10876100)
文摘A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignoring the dependency phenomenon. Instead of capturing the extremum of the structural static responses in the entire space spanned by uncertain parameters, their lower and upper bounds are calculated at the minimal and maximal point vectors obtained dimension by dimension with respect to uncertain parameters based on the Legend orthogonal polynomial approximation, overcoming the potential engineering insignificance caused by the optimization strategy. After performing its theoretical analysis, both the accuracy and applicability of the proposed method are verified.
基金supported by the Defense Industrial Technology Development Program(Grant Nos.2016YFB0200700,JCKY2016601B001,and JCKY2016204B101)the Program of Introducing Talents of Discipline to Universities of China(111 Project)(Grant No.B07009)National Nature Science Foundation of China(Grant Nos.11372025,11432002,and11572024)
文摘In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice,thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method.The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint.To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.
基金the National Outstanding Youth Science Foundation of China (10425208)Civil 863 Program (2006AA04Z410)111 Project (B07009)
文摘In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.
基金Project supported by the National Natural Science Foundation of China(No.10202006).
文摘An interval optimization method for the dynamic response of structures with inter- val parameters is presented.The matrices of structures with interval parameters are given.Com- bining the interval extension with the perturbation,the method for interval dynamic response analysis is derived.The interval optimization problem is transformed into a corresponding de- terministic one.Because the mean values and the uncertainties of the interval parameters can be elected design variables,more information of the optimization results can be obtained by the present method than that obtained by the deterministic one.The present method is implemented for a truss structure.The numerical results show that the method is effective.
文摘How to discover the trustworthy services is a challenge for potential users because of the deficiency of us- age experiences and the information overload of QoE (qual- ity of experience) evaluations from consumers. Aiming to the limitations of traditional interval numbers in measuring the trustworthiness of service, this paper proposed a novel ser- vice recommendation approach using the interval numbers of four parameters (INF) for potential users. In this approach, a trustworthiness cloud model was established to identify the eigenvalue of INF via backward cloud generator, and a new formula of INF possibility degree based on geometrical anal- ysis was presented to ensure the high calculation precision. In order to select the highly valuable QoE evaluations, the similarity of client-side feature between potential user and consumers was calculated, and the multi-attributes trustwor- thiness values were aggregated into INF by the fuzzy ana- lytic hierarchy process method. On the basis of ranking INF, the sort values of trustworthiness of candidate services were obtained, and the trustworthy services were chosen to recommend to potential user. The experiments based on a real-world dataset showed that it can improve the recommendation accuracy of trustworthy services compared to other approaches, which contributes to solving cold start and information overload problem in service recommendation.
文摘In this paper, a two-species harvesting model has been considered and developed a solu- tion procedure which is able to calculate the equilibrium points of the model where some biological parameters of the model are interval numbers. A parametric mathematical pro- gram is formulated to find the biological equilibrium of the model for different values of parameters. This interval-valued problem is converted into an equivalent crisp model using interval mathematics. The main advantage of the proposed procedure is that dif- ferent characteristics of the model can be presented in a single framework. Analytically, the existence of steady state and stabilities are looked into. Using mathematical soft- ware, the model is illustrated and the results are obtained and presented in tabular and graphical forms.