In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitio...In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.展开更多
This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduce...This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduced based on decomposition approach, when dealing with the time derivative of L-K functional, a new tight integral inequality is adopted for bounding the cross terms. Then, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities(LMIs),which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.展开更多
文摘In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.
基金supported by National Natural Science Foundation of China(No.61074072)
文摘This paper considers the problem of delay-dependent robust stability for uncertain systems with interval time-varying delays. By using the direct Lyapunov method, a new Lyapunov-Krasovskii(L-K) functional is introduced based on decomposition approach, when dealing with the time derivative of L-K functional, a new tight integral inequality is adopted for bounding the cross terms. Then, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities(LMIs),which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.