The present paper aims to develop the Kuhn-Tucker and Fritz John criteria for saddle point optimality of interval-valued nonlinear programming problem.To achieve the study objective,we have proposed the definition of ...The present paper aims to develop the Kuhn-Tucker and Fritz John criteria for saddle point optimality of interval-valued nonlinear programming problem.To achieve the study objective,we have proposed the definition of minimizer and maximizer of an interval-valued non-linear programming problem.Also,we have introduced the interval-valued Fritz-John and Kuhn Tucker saddle point problems.After that,we have established both the necessary and sufficient optimality conditions of an interval-valued non-linear minimization problem.Next,we have shown that both the saddle point conditions(Fritz-John and Kuhn-Tucker)are sufficient without any convexity requirements.Then with the convexity requirements,we have established that these saddle point optimality criteria are the necessary conditions for optimality of an interval-valued non-linear programming with real-valued constraints.Here,all the results are derived with the help of interval order relations.Finally,we illustrate all the results with the help of a numerical example.展开更多
基金Taif University Researchers Supporting Project number(TURSP-2020/20),Taif University,Taif,Saudi Arabia。
文摘The present paper aims to develop the Kuhn-Tucker and Fritz John criteria for saddle point optimality of interval-valued nonlinear programming problem.To achieve the study objective,we have proposed the definition of minimizer and maximizer of an interval-valued non-linear programming problem.Also,we have introduced the interval-valued Fritz-John and Kuhn Tucker saddle point problems.After that,we have established both the necessary and sufficient optimality conditions of an interval-valued non-linear minimization problem.Next,we have shown that both the saddle point conditions(Fritz-John and Kuhn-Tucker)are sufficient without any convexity requirements.Then with the convexity requirements,we have established that these saddle point optimality criteria are the necessary conditions for optimality of an interval-valued non-linear programming with real-valued constraints.Here,all the results are derived with the help of interval order relations.Finally,we illustrate all the results with the help of a numerical example.