Eigenvalues of the dielectric-filled waveguide are of great importance to its transmission characteristic analysis and optimization design, which could be easily affected by spatially uncertain dielectric parameters. ...Eigenvalues of the dielectric-filled waveguide are of great importance to its transmission characteristic analysis and optimization design, which could be easily affected by spatially uncertain dielectric parameters. For the sake of quantifying their influence on eigenvalues of the dielectric-filled waveguide and overcoming the limitation of less samples, an interval vector finite element method(IVFEM) is proposed to acquire the lower and upper bounds of the eigenvalues with spatial uncertainty of the medium parameters. Firstly, the uncertain dielectric material properties are described by the interval field model and the corresponding interval Karhunen-Loève(K-L) approximate method. Secondly, by inserting the interval uncertainties into the constitutive relationship of the standard generalized eigenvalue equations of the dielectric-filled waveguide, an interval standard generalized eigenvalue equation is then formulated. At last, the lower and upper bounds of the eigenvalues are calculated according to the first-order perturbation method, which can be used to estimate the transmission properties of the waveguide efficiently. Three kinds of the dielectric-filled waveguides are analyzed by the proposed IVFEM and verified by Monte Carlo simulation method.展开更多
For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust op...For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.51725502)the National Natural Science Foundation of China(Grant No.11802089)the National Defense Fundamental Research Foundation of China(Grant No.JCKY2020110C105)。
文摘Eigenvalues of the dielectric-filled waveguide are of great importance to its transmission characteristic analysis and optimization design, which could be easily affected by spatially uncertain dielectric parameters. For the sake of quantifying their influence on eigenvalues of the dielectric-filled waveguide and overcoming the limitation of less samples, an interval vector finite element method(IVFEM) is proposed to acquire the lower and upper bounds of the eigenvalues with spatial uncertainty of the medium parameters. Firstly, the uncertain dielectric material properties are described by the interval field model and the corresponding interval Karhunen-Loève(K-L) approximate method. Secondly, by inserting the interval uncertainties into the constitutive relationship of the standard generalized eigenvalue equations of the dielectric-filled waveguide, an interval standard generalized eigenvalue equation is then formulated. At last, the lower and upper bounds of the eigenvalues are calculated according to the first-order perturbation method, which can be used to estimate the transmission properties of the waveguide efficiently. Three kinds of the dielectric-filled waveguides are analyzed by the proposed IVFEM and verified by Monte Carlo simulation method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775491,51475417,U1608256,51405433)
文摘For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.