The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary diffe...The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations ( ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integra...Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavel...The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavelets combined with a new collocation-type method is presented. The Daubechies interval wavelets and their main properties are briefly mentioned. The rate of approximation solution converging to the exact solution is given. Finally we also give two numerical examples.展开更多
The construction and properties of interval minimum-energy wavelet frame are systematically studied in this paper. They are as follows: 1) give the definition of interval minimum-energy wavelet frame; 2) give the n...The construction and properties of interval minimum-energy wavelet frame are systematically studied in this paper. They are as follows: 1) give the definition of interval minimum-energy wavelet frame; 2) give the necessary and sufficient conditions for the minimum-energy frames for L^2[0,1]; 3) present the construction algorithm for minimum-energy wavelet frame associated with refinable functions on the interval with any support y; 4) give the decomposition and reconstruction formulas of the minimum-energy frame on the interval [0,1],展开更多
Flexible skew thin plate is widely used in mechanical engineering,architectural engineering and structural engineering.High-precision analysis is very important for structural design and improvement.In this paper,the ...Flexible skew thin plate is widely used in mechanical engineering,architectural engineering and structural engineering.High-precision analysis is very important for structural design and improvement.In this paper,the multivariable wavelet finite element(MWFE)based on B-spline wavelet on the interval(BSWI)is constructed for flexible skew thin plate analysis.First,the finite element formulation is derived from multivariable generalized potential energy function.Then the generalized field variables are interpolated and calculated by BSWI.Different from the traditional wavelet finite element,the analysis precision can be improved because the generalized displacement and stress field variables are interpolated and calculated independently,the secondary calculation and the computational error are avoided.In order to verify the effectiveness of the constructed MWFE,several numerical examples are given in the end.展开更多
Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell ar...Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell are constructed in this paper. Different from the traditional method, the present one treats the generalized displacement and stress as independent variables. So differentiation and integration are avoided in calculating generalized stress and thus the precision is improved. Furthermore, compared with commonly used Daubechies wavelet, BSWI has explicit expression and excellent approximation property and thus further guarantee satisfactory results. Finally, the efficiency of the constructed multivariable shell elements is validated through several numerical examples.展开更多
Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element...Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element and the Mindlin plate element together. First, the elastic plate element formulation is derived from the generalized potential energy function. Due to its excellent numerical approximation property, BSWI is used as the interpolation function to separate the solving field variables. Second, the multivariable wavelet Mindlin plate element is deduced and constructed according to the multivariable generalized variational principle and BSWI. Third, by following the displacement compatibility requirement and the coordinate transformation method, the multivariable wavelet finite element for fiat shell is constructed. The novel advantage of the constructed element is that the solving precision and efficiency can be improved because the generalized displacement field variables and stress field variables are interpolated and solved independently. Finally, several numerical examples including bending and vibration analyses are given to verify the constructed element and method.展开更多
A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections...A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections.With the aid of structural periodicity,the boundary integral equations of both the scatterer and the matrix are discretized in a unit cell.To make the curve boundary compatible,the second-order scaling functions of the B-spline wavelet on the interval are used to approximate the geometric boundaries,while the boundary variables are interpolated by scaling functions of arbitrary order.For any given angular frequency,an effective technique is given to yield matrix values related to the boundary shape.Thereafter,combining the periodic boundary conditions and interface conditions,linear eigenvalue equations related to the Bloch wave vector are developed.Typical numerical examples illustrate the superior performance of the proposed method by comparing with the conventional BEM.展开更多
文摘The quasi-Shannon interval wavelet is constructed based on the interpolation wavelet theory, and an adaptive precise integration method, which is based on extrapolation method is presented for nonlinear ordinary differential equations ( ODEs). And then, an adaptive interval wavelet precise integration method (AIWPIM) for nonlinear partial differential equations(PDEs) is proposed. The numerical results show that the computational precision of AIWPIM is higher than that of the method constructed by combining the wavelet and the 4th Runge-Kutta method, and the computational amounts of these two methods are almost equal. For convenience, the Burgers equation is taken as an example in introducing this method, which is also valid for more general cases.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.
基金Supported by the National Natural Science Foundation of China (60572048)the Natural Science Foundation of Guangdong Province(054006621)
文摘Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
文摘The numerical solutions to the nonlinear integral equations of Hammerstein-type y(t) = f(t) + integral(0)(1)k(t, s)g(s, y(s))ds, t is an element of [0,1] are investigated. A degenerate kernel scheme basing on ID-wavelets combined with a new collocation-type method is presented. The Daubechies interval wavelets and their main properties are briefly mentioned. The rate of approximation solution converging to the exact solution is given. Finally we also give two numerical examples.
基金the National Natural Science Foundation of China (Grant No.60375021)the Natural Science Foundation of Hunan Province,China (Grant No.05JJ10011)the Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos.04A056 and 06C836)
文摘The construction and properties of interval minimum-energy wavelet frame are systematically studied in this paper. They are as follows: 1) give the definition of interval minimum-energy wavelet frame; 2) give the necessary and sufficient conditions for the minimum-energy frames for L^2[0,1]; 3) present the construction algorithm for minimum-energy wavelet frame associated with refinable functions on the interval with any support y; 4) give the decomposition and reconstruction formulas of the minimum-energy frame on the interval [0,1],
基金supported by the National Natural Science Foundation of China(Grant No.51225501)the Fundamental Research Funds for the Central Universities+2 种基金the Project funded by China Postdoctoral Science Foundation(Grant No.2014M552432)the National Science and Technology Major Project of China(Grant No.2012ZX04002071)the Program for Changjiang Scholars and Innovative Research Team in University
文摘Flexible skew thin plate is widely used in mechanical engineering,architectural engineering and structural engineering.High-precision analysis is very important for structural design and improvement.In this paper,the multivariable wavelet finite element(MWFE)based on B-spline wavelet on the interval(BSWI)is constructed for flexible skew thin plate analysis.First,the finite element formulation is derived from multivariable generalized potential energy function.Then the generalized field variables are interpolated and calculated by BSWI.Different from the traditional wavelet finite element,the analysis precision can be improved because the generalized displacement and stress field variables are interpolated and calculated independently,the secondary calculation and the computational error are avoided.In order to verify the effectiveness of the constructed MWFE,several numerical examples are given in the end.
基金supported by the National Natural Science Foundation of China (No. 50875195)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 2007B33)the Key Project of the National Natural Science Foundation of China (No. 51035007)
文摘Based on the generalized variational principle and B-spline wavelet on the interval (BSWI), the multivariable BSWI elements with two kinds of variables (TBSWI) for hyperboloidal shell and open cylindrical shell are constructed in this paper. Different from the traditional method, the present one treats the generalized displacement and stress as independent variables. So differentiation and integration are avoided in calculating generalized stress and thus the precision is improved. Furthermore, compared with commonly used Daubechies wavelet, BSWI has explicit expression and excellent approximation property and thus further guarantee satisfactory results. Finally, the efficiency of the constructed multivariable shell elements is validated through several numerical examples.
基金This work was supported by the National Natural Science Foundation of China (No. 51775408), the Project funded by the Key Laboratory of Product Quality Assurance & Diagnosis (No. 2014SZS14-P05)
文摘Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element and the Mindlin plate element together. First, the elastic plate element formulation is derived from the generalized potential energy function. Due to its excellent numerical approximation property, BSWI is used as the interpolation function to separate the solving field variables. Second, the multivariable wavelet Mindlin plate element is deduced and constructed according to the multivariable generalized variational principle and BSWI. Third, by following the displacement compatibility requirement and the coordinate transformation method, the multivariable wavelet finite element for fiat shell is constructed. The novel advantage of the constructed element is that the solving precision and efficiency can be improved because the generalized displacement field variables and stress field variables are interpolated and solved independently. Finally, several numerical examples including bending and vibration analyses are given to verify the constructed element and method.
基金This work is supported by the National Natural Science Foundation of China(Nos.U1909217,U1709208)Zhejiang Special Support Program for High-level Personnel Recruitment of China(No.2018R52034).
文摘A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections.With the aid of structural periodicity,the boundary integral equations of both the scatterer and the matrix are discretized in a unit cell.To make the curve boundary compatible,the second-order scaling functions of the B-spline wavelet on the interval are used to approximate the geometric boundaries,while the boundary variables are interpolated by scaling functions of arbitrary order.For any given angular frequency,an effective technique is given to yield matrix values related to the boundary shape.Thereafter,combining the periodic boundary conditions and interface conditions,linear eigenvalue equations related to the Bloch wave vector are developed.Typical numerical examples illustrate the superior performance of the proposed method by comparing with the conventional BEM.