A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se...A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.展开更多
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe ...Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.展开更多
In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select...In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.展开更多
Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In ...Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust.展开更多
A potential reduction algorithm is proposed for optimization of a convex function subject to linear constraints.At each step of the algorithm,a system of linear equations is solved to get a search direction and the Ar...A potential reduction algorithm is proposed for optimization of a convex function subject to linear constraints.At each step of the algorithm,a system of linear equations is solved to get a search direction and the Armijo's rule is used to determine a stepsize.It is proved that the algorithm is globally convergent.Computational results are reported.展开更多
This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uni...This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.展开更多
Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morph...Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morphology information, Existing geological surface models suffer from high levels of uncertainty, which exposes oil and gas exploration and development to additional risk. In this paper, we achieve a reconstruction of the uncertainties associated with a geological surface using chance-constrained programming based on multisource data. We also quantifi ed the uncertainty of the modeling data and added a disturbance term to the objective function. Finally, we verifi ed the applicability of the method using both synthetic and real fault data. We found that the reconstructed geological models met geological rules and reduced the reconstruction uncertainty.展开更多
A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncert...A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discus...In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.展开更多
A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or...A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or constraint. Compared with the traditional method of achieving the regular solution by introducing an artificial constraint, it has advantages of saving the memories and little computational efforts.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
This study employs a chance-constrained data envelopment analysis (CDEA) approach with two models (model A and model B) to decompose provincial productivity growth in Vietnamese agriculture from 1995 to 2007 into tech...This study employs a chance-constrained data envelopment analysis (CDEA) approach with two models (model A and model B) to decompose provincial productivity growth in Vietnamese agriculture from 1995 to 2007 into technological progress and efficiency change. The differences between the chance - constrained programming model A and model B are assumptions imposed on the covariance matrix. The decomposition allows us to identify the contributions of technical change and the improvement in technical efficiency to productivity growth in Vietnamese production. Sixty-one provinces in Vietnam are classified into Mekong - technology and other -technology categories. We conduct a Mann-Whitney test to verify whether the two samples, the Mekong technology province sample and the other technology sample, are drawn from the same productivity change populations. The result of the Mann-Whitney test indicates that the differences between the Mekong technology category and the other technology category from two models are more significant. Two important questions are whether some provinces in the samples could maintain their relative efficiency rank positions in comparison with the others over the study period and how to further examine the agreements between the two models. The Kruskal - Wallis test statistic shows that technical efficiency from both models for some provinces are higher than those of them in the study period. The Malmquist results show that production frontier has contracted by around 1.3 percent and 0.31 percent from chance-constrained model A and model B, respectively, a year on average over the sample period. To examine the agreements or disagreements in the total factor productivity indexes we compute the correlation between Malmquist indexes, which is positive and not very high. Thus there is a little discrepancy between the two Malmquist indexes, estimated from the chance - constrained models A and B.展开更多
This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original va...This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.展开更多
By adding one variable to the equality- or inequality-constrained minimization problems, a new simple penalty function is proposed. It is proved to be exact in the sense that under mild assumptions, the local minimize...By adding one variable to the equality- or inequality-constrained minimization problems, a new simple penalty function is proposed. It is proved to be exact in the sense that under mild assumptions, the local minimizers of this penalty function are precisely the local minimizers of the original problem, when the penalty parameter is sufficiently large.展开更多
Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWL...Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.展开更多
The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first ref...The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.展开更多
Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has...Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.展开更多
基金This research was supported by Chinese NNSF grant and NSF grant of Jiangsu Province
文摘A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
文摘Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems ranging from portfolio selection to water resource management may be cast into this framework. Severe limitations on objectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways for singling out such solutions are also discussed and a numerical example provided for the sake of illustration.
基金The Spring Plan of Ministry of Education,China(No.Z2012017)
文摘In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.
文摘Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust.
文摘A potential reduction algorithm is proposed for optimization of a convex function subject to linear constraints.At each step of the algorithm,a system of linear equations is solved to get a search direction and the Armijo's rule is used to determine a stepsize.It is proved that the algorithm is globally convergent.Computational results are reported.
文摘This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.
基金by National Science and Technology Major Project(Grant No.2017ZX05018004004)the National Natural Science Foundation of China (No.U1562218 & 41604107).
文摘Geological surface modeling is typically based on seismic data, well data, and models of regional geology. However, structural interpretation of these data is error-prone, especially in the absence of structural morphology information, Existing geological surface models suffer from high levels of uncertainty, which exposes oil and gas exploration and development to additional risk. In this paper, we achieve a reconstruction of the uncertainties associated with a geological surface using chance-constrained programming based on multisource data. We also quantifi ed the uncertainty of the modeling data and added a disturbance term to the objective function. Finally, we verifi ed the applicability of the method using both synthetic and real fault data. We found that the reconstructed geological models met geological rules and reduced the reconstruction uncertainty.
文摘A deterministic linear programming model which optimizes the abatement of each SO2 emission source, is extended into a CCP form by introducing equations of probabilistic constrained through the incorporation of uncertainty in the source-receptor-specific transfer coefficients. Based on the calculation of SO2 and sulfate average residence time for Liuzhou City, a sulfur deposition model has been developed and the distribution of transfer coefficients have been found to be approximately log-normal. Sulfur removal minimization of the model shows that the abatement of emission sources in the city is more effective, while control cost optimization provides the lowest cost programmes for source abatement at each allowable deposition limit under varied environmental risk levels. Finally a practicable programme is recommended.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
文摘In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.
文摘A method is provided for finding an initial regular solution of a linear programming in this paper. The key to this method is to solve an auxiliary linear programming instead of to introduce any artificial variable or constraint. Compared with the traditional method of achieving the regular solution by introducing an artificial constraint, it has advantages of saving the memories and little computational efforts.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
文摘This study employs a chance-constrained data envelopment analysis (CDEA) approach with two models (model A and model B) to decompose provincial productivity growth in Vietnamese agriculture from 1995 to 2007 into technological progress and efficiency change. The differences between the chance - constrained programming model A and model B are assumptions imposed on the covariance matrix. The decomposition allows us to identify the contributions of technical change and the improvement in technical efficiency to productivity growth in Vietnamese production. Sixty-one provinces in Vietnam are classified into Mekong - technology and other -technology categories. We conduct a Mann-Whitney test to verify whether the two samples, the Mekong technology province sample and the other technology sample, are drawn from the same productivity change populations. The result of the Mann-Whitney test indicates that the differences between the Mekong technology category and the other technology category from two models are more significant. Two important questions are whether some provinces in the samples could maintain their relative efficiency rank positions in comparison with the others over the study period and how to further examine the agreements between the two models. The Kruskal - Wallis test statistic shows that technical efficiency from both models for some provinces are higher than those of them in the study period. The Malmquist results show that production frontier has contracted by around 1.3 percent and 0.31 percent from chance-constrained model A and model B, respectively, a year on average over the sample period. To examine the agreements or disagreements in the total factor productivity indexes we compute the correlation between Malmquist indexes, which is positive and not very high. Thus there is a little discrepancy between the two Malmquist indexes, estimated from the chance - constrained models A and B.
基金Supported by the National Natural Science Foundation of China(No.11671183)the Fundamental Research Funds for the Central Universities(No.2018IB016,2019IA004,No.2019IB010)
文摘This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos. 10571116 and51075421)
文摘By adding one variable to the equality- or inequality-constrained minimization problems, a new simple penalty function is proposed. It is proved to be exact in the sense that under mild assumptions, the local minimizers of this penalty function are precisely the local minimizers of the original problem, when the penalty parameter is sufficiently large.
基金supported by the National Natural Science Foundation of China(61201282)the Science and Technology on Communication Information Security Control Laboratory Foundation(9140C130304120C13064)
文摘Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.
文摘The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.
文摘Electricity network is a very complex entity that comprises several components like generators, transmission lines, loads among others. As technologies continue to evolve, the complexity of the electricity network has also increased as more devices are being connected to the network. To understand the physical laws governing the operation of the network, techniques such as optimal power flow (OPF), Economic dispatch (ED) and Security constrained optimal power flow (SCOPF) were developed. These techniques have been used extensively in network operation, planning and so on. However, an in-depth presentation showcasing the merits and demerits of these techniques is still lacking in the literature. Hence, this paper intends to fill this gap. In this paper, Economic dispatch, optimal power flow and security-constrained optimal power flow are applied to a 3-bus test system using a linear programming approach. The results of the ED, OPF and SC-OPF are compared and presented.