The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me...Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.展开更多
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set...Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.展开更多
The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued in...The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.展开更多
This note points outs the inappropriateness of an accuracy function introduced by Ye [Ye, J. (2009). Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic...This note points outs the inappropriateness of an accuracy function introduced by Ye [Ye, J. (2009). Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Systems with Applications, 36 (3): 6899-6902] and its misleading use for comparing two interval-valued intuitionistic fuzzy numbers.展开更多
We first propose a series of similarity measures for intuitionistic fuzzy values (IFVs) based on the intuitionistic fuzzy operators (Atanassov 1995). The parameters in the proposed similarity measures can control ...We first propose a series of similarity measures for intuitionistic fuzzy values (IFVs) based on the intuitionistic fuzzy operators (Atanassov 1995). The parameters in the proposed similarity measures can control the degree of membership and the degree of non-membership of an IFV, which can reflect the decision maker’s risk preference. Moreover, we can obtain some known similarity measures when some fixed values are assigned to the parameters. Furthermore, we apply the similarity measures to aggregate IFVs and develop some aggregation operators, such as the intuitionistic fuzzy dependent averaging operator and the intuitionistic fuzzy dependent geometric operator, whose prominent characteristic is that the associated weights only depend on the aggregated intuitionistic fuzzy arguments and can relieve the influence of unfair arguments on the aggregated results. Based on these aggregation operators, we develop some group decision making methods, and finally extend our results to interval-valued intuitionistic fuzzy environment.展开更多
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(70625005)
文摘Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
基金supported in part by the National Natural Science Foundation of China (No.71071161)the National Science Fund for Distinguished Young Scholars of China (No.70625005)
基金the National Defense Pre-Research Foundation of China(No.9140A27020211JB34)
文摘The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.
基金supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under its Discovery Grant program and the Natural Sciences Foundation of Fujian Province of China (No. 2010J01362)
文摘This note points outs the inappropriateness of an accuracy function introduced by Ye [Ye, J. (2009). Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Systems with Applications, 36 (3): 6899-6902] and its misleading use for comparing two interval-valued intuitionistic fuzzy numbers.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China (No.70625005)the National Natural Science Foundation of China (No.71071161)the Program Sponsored for Scientific Innovation Research of College Graduate in Jiangsu Province (No.CX10B_059Z)
文摘We first propose a series of similarity measures for intuitionistic fuzzy values (IFVs) based on the intuitionistic fuzzy operators (Atanassov 1995). The parameters in the proposed similarity measures can control the degree of membership and the degree of non-membership of an IFV, which can reflect the decision maker’s risk preference. Moreover, we can obtain some known similarity measures when some fixed values are assigned to the parameters. Furthermore, we apply the similarity measures to aggregate IFVs and develop some aggregation operators, such as the intuitionistic fuzzy dependent averaging operator and the intuitionistic fuzzy dependent geometric operator, whose prominent characteristic is that the associated weights only depend on the aggregated intuitionistic fuzzy arguments and can relieve the influence of unfair arguments on the aggregated results. Based on these aggregation operators, we develop some group decision making methods, and finally extend our results to interval-valued intuitionistic fuzzy environment.