Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed ...This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed in the frame of fuzzy rough set model.The basic properties of fuzzy rough approximation operators were obtained.展开更多
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rou...This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binarv operation of ring was discussed.展开更多
As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. ...As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.展开更多
Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set...Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.展开更多
This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -l...This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.展开更多
In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the ...In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the (fuzzy) relation in some generalized rough set model. Our results show that by using the axiomatic approach, the (fuzzy) relation determined by (fuzzy) approximation operators is unique in some (fuzzy) double-universe model.展开更多
Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems....Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.展开更多
Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance prin...Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.展开更多
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
基金Supported by the National Natural Science Foundation of China(60875034)
文摘This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed in the frame of fuzzy rough set model.The basic properties of fuzzy rough approximation operators were obtained.
基金Supported by Soft Science Research Project of Henan Province(122400450212)Supported by Foundation Lead-edge Technologies Research Project of Henan Province(122300410061)
文摘This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binarv operation of ring was discussed.
基金Supported by the Natural Science Foundation of Higher Education of Jiangsu Province(18KJB110024)the High Training Funded for Professional Leaders of Higher Vocational Colleges in Jiangsu Province(2018GRFX038)Science and Technology Research Project of Nantong Shipping College(HYKY/2018A03)
文摘As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Intuitionistic fuzzy set (IFS) is a set of 2-tuple arguments, each of which is characterized by a membership degree and a nonmembership degree. The generalized form of IFS is interval-valued intuitionistic fuzzy set (IVIFS), whose components are intervals rather than exact numbers. IFSs and IVIFSs have been found to be very useful to describe vagueness and uncertainty. However, it seems that little attention has been focused on the clustering analysis of IFSs and IVIFSs. An intuitionistic fuzzy hierarchical algorithm is introduced for clustering IFSs, which is based on the traditional hierarchical clustering procedure, the intuitionistic fuzzy aggregation operator, and the basic distance measures between IFSs: the Hamming distance, normalized Hamming, weighted Hamming, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance. Subsequently, the algorithm is extended for clustering IVIFSs. Finally the algorithm and its extended form are applied to the classifications of building materials and enterprises respectively.
基金supported by grants from the National Natural Science Foundation of China(Nos.61075120, 60673096 and 60773174)the Natural Science Foundation of Zhejiang Province in China(No.Y107262).
文摘This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.
基金Supported by the National Natural Science Foundation of China(11171308,61379018,51305400)
文摘In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the (fuzzy) relation in some generalized rough set model. Our results show that by using the axiomatic approach, the (fuzzy) relation determined by (fuzzy) approximation operators is unique in some (fuzzy) double-universe model.
基金The National Natural Science Foundation of China (No60474022)
文摘Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 60632050) and Postdoctoral Science Foundation of China (20100481149).
文摘Though the dominance-based rough set approach has been applied to interval-valued information systems for knowledge discovery, the traditional dominance relation cannot be used to describe the degree of dominance principle in terms of pairs of objects. In this paper, a ranking method of interval-valued data is used to describe the degree of dominance in the interval-valued information system. Therefore, the fuzzy rough technique is employed to construct the rough approximations of upward and downward unions of decision classes, from which one can induce at least and at most decision rules with certainty factors from the interval-valued decision system. Some numerical examples are employed to substantiate the conceptual arguments.