Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities.In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and cli...Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities.In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and climate changes,here we summarize the research results of pockmarks in the spatio-temporal distributions and shaping factors.Most of pockmarks occur along active or passive continental margins during the last 25 kyr B.P..Circular and ellipse are the most common forms of pockmarks,whereas pockmarks in a special crescent or elongated shape are indicators of slope instabilities,and ring-shape pockmarks are endemic to the gas hydrate zones.Further researches should be focused on the trigger mechanism of climate changes based on the pockmarks in the high latitudes formed during the deglaciation periods,and the role of gas hydrates in the seafloor evolution should be elucidated.In addition,the feature of pockmarks at their early stage(e.g.,developing gas chimneys and gas driving sedimentary doming)and the relations between pockmarks and mass movements,mud diapirs could be further studied to clarify the influences of rapid methane release from submarine sediments on the atmospheric carbon contents.展开更多
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore ...Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.展开更多
Objective The term "pockmark" was introduced by King and MacLean (1970) to describe small "circular" on echosounder records in Nova Scotia. described as circular, near Pockmarks are usually circular or elongated...Objective The term "pockmark" was introduced by King and MacLean (1970) to describe small "circular" on echosounder records in Nova Scotia. described as circular, near Pockmarks are usually circular or elongated depressions, generally 10--400 m in diameter and 30-50 m in deep. Pockmarks are normally regarded to be manifestations of fluids escape through the seabed. Pockmarks are valuable features on the seafloor and are useful in constraining the hydrodynamics of sedimentary basins. Since then pockmarks have been recognized in many areas around the world. They occur predominantly in fine-grained siliciclastic depositional settings, although a few case studies have been reported in carbonate settings. In this paper we illustrate a suite of fluid escape features, discovered during the course of petroleum exploration on the West Africa continental margin (Fig. 1). They are particularly of interest to the oil and gas industry because they could be potential indicators of deeply buried hydrocarbon reservoirs, and fluid flow phenomena in the deep water oilfield are important for the safe and efficient exploration, development and production of hydrocarbons in the area.展开更多
The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the...The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries.展开更多
In the late Miocene,giant ancient pockmarks,which are fairly rare globally,developed in the Qiongdongnan Basin.In this paper,to determine the sedimentary characteristics and genetic mechanism of these giant ancient po...In the late Miocene,giant ancient pockmarks,which are fairly rare globally,developed in the Qiongdongnan Basin.In this paper,to determine the sedimentary characteristics and genetic mechanism of these giant ancient pockmarks in the Yinggehai Formation of the Qiongdongnan Basin,based on high-resolution 3D seismic data and multiattribute fusion technologies,we analyzed the planar distribution and seismic facies of the ancient pockmarks and compared the characteristics of the ancient pockmarks with those of channels,craters,and hydrate pits.Moreover,we also discussed the implications of the fluid escape system and paleo-bottom current activity in the ancient pockmark development area and analyzed the influence of the ancient pockmarks on the paleoclimate in this region.Finally,an evolutionary model was proposed for the giant ancient pockmarks.This model shows that the giant ancient pockmarks in the southern Qiongdongnan Basin were affected by both deep fluid escape and lateral transformation of paleobottom currents.In addition,the giant ancient pockmarks contributed to the atmospheric CO_(2)concentration in the late Miocene and played a great role in the contemporary evaluation of deepwater petroleum exploration.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41606044 41906068+3 种基金 91 858208) the National Key Research and Development Program (No. 2018YFC031000303) the Taishan Scholar Special Experts Project (No. ts201712079)the Marine Geological Survey Program of China Geological Survey (No. DD20190819)
文摘Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities.In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and climate changes,here we summarize the research results of pockmarks in the spatio-temporal distributions and shaping factors.Most of pockmarks occur along active or passive continental margins during the last 25 kyr B.P..Circular and ellipse are the most common forms of pockmarks,whereas pockmarks in a special crescent or elongated shape are indicators of slope instabilities,and ring-shape pockmarks are endemic to the gas hydrate zones.Further researches should be focused on the trigger mechanism of climate changes based on the pockmarks in the high latitudes formed during the deglaciation periods,and the role of gas hydrates in the seafloor evolution should be elucidated.In addition,the feature of pockmarks at their early stage(e.g.,developing gas chimneys and gas driving sedimentary doming)and the relations between pockmarks and mass movements,mud diapirs could be further studied to clarify the influences of rapid methane release from submarine sediments on the atmospheric carbon contents.
基金Supported by the National Natural Science Foundation of China(No.41072216)the Science and Technology Development Program of Shandong Province(No.2014GGX104007)
文摘Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.
基金supported by the National Planned Major Science and Technology Projects of China(grant No.2011ZX05030-005-02)
文摘Objective The term "pockmark" was introduced by King and MacLean (1970) to describe small "circular" on echosounder records in Nova Scotia. described as circular, near Pockmarks are usually circular or elongated depressions, generally 10--400 m in diameter and 30-50 m in deep. Pockmarks are normally regarded to be manifestations of fluids escape through the seabed. Pockmarks are valuable features on the seafloor and are useful in constraining the hydrodynamics of sedimentary basins. Since then pockmarks have been recognized in many areas around the world. They occur predominantly in fine-grained siliciclastic depositional settings, although a few case studies have been reported in carbonate settings. In this paper we illustrate a suite of fluid escape features, discovered during the course of petroleum exploration on the West Africa continental margin (Fig. 1). They are particularly of interest to the oil and gas industry because they could be potential indicators of deeply buried hydrocarbon reservoirs, and fluid flow phenomena in the deep water oilfield are important for the safe and efficient exploration, development and production of hydrocarbons in the area.
基金Supported by the Special Support Program for Cultivating High-level Talents in Guangdong Province(No.2019BT02H594)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)+3 种基金the National Natural Science Foundation of China(Nos.41876052,42076218,U1901217,91855101,41773039)the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515011836,2021A1515110851)the Science and Technology Planning Project of Guangzhou(No.202201010230)the Special Research Assistant Program of Chinese Academy of Sciences to Junhui YU。
文摘The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries.
基金The National Natural Science Foundation of China under contract No.41976073the Guangdong Major Project of Basic and Applied Basic Research under contract No.2020B0301030003+1 种基金the Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)Project under contract No.ZJW-2019-03the China Geological Survey Project under contract No.DD20190230.
文摘In the late Miocene,giant ancient pockmarks,which are fairly rare globally,developed in the Qiongdongnan Basin.In this paper,to determine the sedimentary characteristics and genetic mechanism of these giant ancient pockmarks in the Yinggehai Formation of the Qiongdongnan Basin,based on high-resolution 3D seismic data and multiattribute fusion technologies,we analyzed the planar distribution and seismic facies of the ancient pockmarks and compared the characteristics of the ancient pockmarks with those of channels,craters,and hydrate pits.Moreover,we also discussed the implications of the fluid escape system and paleo-bottom current activity in the ancient pockmark development area and analyzed the influence of the ancient pockmarks on the paleoclimate in this region.Finally,an evolutionary model was proposed for the giant ancient pockmarks.This model shows that the giant ancient pockmarks in the southern Qiongdongnan Basin were affected by both deep fluid escape and lateral transformation of paleobottom currents.In addition,the giant ancient pockmarks contributed to the atmospheric CO_(2)concentration in the late Miocene and played a great role in the contemporary evaluation of deepwater petroleum exploration.