Based on the discussion on the intracontinental orogenic igneous rocks formed after India-Asia collision (40 or 45 Ma),the intracontinental orogenic processes of Qinghai-Xizang (Tibet )-Himalaya are traced . Muscovite...Based on the discussion on the intracontinental orogenic igneous rocks formed after India-Asia collision (40 or 45 Ma),the intracontinental orogenic processes of Qinghai-Xizang (Tibet )-Himalaya are traced . Muscovite/two mica granite is considered as a petrological record of intracontinental subduction. Volcanic rocks of shoshonite series are believed to be the products of the orogenic and outside cratonic lithosphere convergence . The intracontinental orogenic igneous rocks are developed only on the margins of the orogenic belt. The pairing phe nomenon of the igneous rock zones is regarded as one of the best signs to recognize the special range of orogenic belt . The stage of magmatic activity is a representation and indicator of orogenic episode . Three pairs of the igneous events in Oligocene , Miocene and Pleistocene and their space distribution indicate three corresponding orogenic episodes and the horizontal expansion across the orogenic belt , respectively . On the northern and southern margins of the orogenic belt are always developed the volcanic eruption of the shoshonite series and the muscovite two mica granite intrusion ,indicating the different nature of the margins .In the former case the colder crust and hotter mantle . as well as the double crust resulted from the horizontal shortening are developed , and in the latter case the hotter crust and colder mantle , the double crust by the overlapping of two crusts are formed . During the Pleistocene orogenic episode the interior of the orogenic belt , i. e. the Gandise - Qiangtang might be going to the stage of the orogenic collapse . and the compressional orogeny might occur only at both the mar gins . The orogenic processes mentioned above show that beneath the Qinghai - Xizang (Tibet ) Himalaya,the deeper mantle has been always undergoing a descending convergence , rather than the simple orogeny resulted from the underthrusting of the India continent only . The dynamic forces that results in rapid uplift of the plateau since Pleistocene come from the buoyances caused by the compressional stress and mountain root at the margins and by the lithosphere delamination and mountain root in the interior .展开更多
The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the...The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.展开更多
The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early ...The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early compression and late extension. Mineralization of gold andother metals in the Junggar orogen occurred mainly in the Permian and in a few cases in theLate Carboniferous. The deposits are largely distributed in areas where collisional orogenesiswas intensive and formed in a transitional stage from compression to extension. Therefore, goldmineralization in the Junggar orogen is fully consistent with the collisional orogenesis in time,space and geodynamic setting. This indicates that the mineral deposit model of collisionalorogenesis is applicable to prospecting and study of ore deposits in the Junggar orogen.Furthermore, the factual distribution of gold and other deposits in this region is just the same asthe collisional orogenic model presents.展开更多
In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and tog...In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun North Qaidam North Qinling UHP metamorphic belt. The other is the Dabie Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite and microdiamond bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino Korean cratons, occurred during the Paleozoic. On the other hand, the well constrained Dabie Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intracontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts as a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino Korean cratons. Therefore, any dynamic model for the orogen must account for the development of UHP metamorphic rocks belonging to the separate two tectonic belts of different age and tectono metamorphic history.展开更多
Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan Indosinian folding zone. In the north boundary adjoining the North China Block, there are an ...Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan Indosinian folding zone. In the north boundary adjoining the North China Block, there are an Early Palaeozoic ophiolitic mixtite belt and the Hefei Mesozoic Cenozoic faulted basin which overlaps on the suture belt. In the south of Dabie orogen, there is a secondary tectonic unit called Foreland thrust faulted structural zone which was mainly formed by the intracontinental subductions during Mesozoic era. The study shows that the Dabie Block is a part of mid late Proterozoic palaeo island arc at the north margin of Yangtze Block. During Caledonian period,as a submerged uplift at the northen continental margin of Yangtze Block, the Dabie Block collided with the early Palaeozoic palaeo island arc at the south margin of North China Block, resulting in the convergence of the North and South China Blocks and the disappearance of oceanic crust. Since then, large scale intracontinental subductions were followed. Dabie Orogenic Belt is the product of overlapping of Yangtze Block, Dabie Block and North China Block under the mechanism of intracontinental subduction. Indosinian period is the period of chief deformation and high pressure dynamic metamorphism for Dabie Block, and Yanshan period is the main orogenic period in which the remelting of crust caused by basement shearing resulted in large scale thermometamorphism. The present tectonic framework of the orogen was finally formed by the rapid uplifting of the Dabieshan mountains and gliding southwards, which result in the developing of thrust belt on south side and the extensional tectonic movement on north side.展开更多
The orogenic process of the Central Orogenic Belt (COB) of China can basically be divided into two stages. The first stage was in the period of geosynclinal inversion or in the period of convergence of ancient 1andmas...The orogenic process of the Central Orogenic Belt (COB) of China can basically be divided into two stages. The first stage was in the period of geosynclinal inversion or in the period of convergence of ancient 1andmasses. The second stage wholly occurred in an intracontinental environment within the diwa regime. The modern mountain ranges are rnainly the products of the second stage. This paper elaborates them in the light of information from different parts of the orogenic belt.展开更多
基金This study is supported by the Ministry of Geology and Mineral Resources and the National Natural Science Foundation of China
文摘Based on the discussion on the intracontinental orogenic igneous rocks formed after India-Asia collision (40 or 45 Ma),the intracontinental orogenic processes of Qinghai-Xizang (Tibet )-Himalaya are traced . Muscovite/two mica granite is considered as a petrological record of intracontinental subduction. Volcanic rocks of shoshonite series are believed to be the products of the orogenic and outside cratonic lithosphere convergence . The intracontinental orogenic igneous rocks are developed only on the margins of the orogenic belt. The pairing phe nomenon of the igneous rock zones is regarded as one of the best signs to recognize the special range of orogenic belt . The stage of magmatic activity is a representation and indicator of orogenic episode . Three pairs of the igneous events in Oligocene , Miocene and Pleistocene and their space distribution indicate three corresponding orogenic episodes and the horizontal expansion across the orogenic belt , respectively . On the northern and southern margins of the orogenic belt are always developed the volcanic eruption of the shoshonite series and the muscovite two mica granite intrusion ,indicating the different nature of the margins .In the former case the colder crust and hotter mantle . as well as the double crust resulted from the horizontal shortening are developed , and in the latter case the hotter crust and colder mantle , the double crust by the overlapping of two crusts are formed . During the Pleistocene orogenic episode the interior of the orogenic belt , i. e. the Gandise - Qiangtang might be going to the stage of the orogenic collapse . and the compressional orogeny might occur only at both the mar gins . The orogenic processes mentioned above show that beneath the Qinghai - Xizang (Tibet ) Himalaya,the deeper mantle has been always undergoing a descending convergence , rather than the simple orogeny resulted from the underthrusting of the India continent only . The dynamic forces that results in rapid uplift of the plateau since Pleistocene come from the buoyances caused by the compressional stress and mountain root at the margins and by the lithosphere delamination and mountain root in the interior .
文摘The Tan-Lu Fault was once a transform fault in the Paleotethys, west of which was the Qinling-Dabie Ocean separating the Yangtze Craton from the North China Craton, and east of which was the Su-Lu Ocean separating the Su-Wan Block from the Jiao-Liao Craton. The Qinling-Dabie Ocean closed in the Indosinian orogeny, which created the China-Southeast Asia Subcontinent, with the Tan-Lu Fault becoming a marginal shear zone along the newly-formed amalgamated subcontinent. The Su-Lu Ocean subducted partly in the Indosinian.orogeny, but not closed. In the Jurassic and Early Cretaceous, the Su-Wan Block drifted northwards with subduction of the Su-Lu Ocean and moved westwards to converge the subcontinent by sinistral sheafing of the ENE-striking fractures. The Su-Lu Ocean finally closed and the Su-Wan Block collided with the Jiao-Liao Craton in the Early Cretaceous, which constituted a part of the magnificent interplate Yanshanides. The interplate orogeny rejuvenated the fossil sutures and deep fractures, as well as the Indosinian orogen, and the intraplate (intracontinental) Yanshanian orogeny occurred in the subcontinent. The East Asia Yanshanides, consisting of the interplate orogens in the outer side and the intraplate orogens in the inner side, collapsed quickly in the latest Early Cretaceous and Late Cretaceous. The eastern China area entered a tensile period from the Eogene, and the tectonic differentiation between the central and eastern China areas since the Jurassic was further strengthened.
文摘The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early compression and late extension. Mineralization of gold andother metals in the Junggar orogen occurred mainly in the Permian and in a few cases in theLate Carboniferous. The deposits are largely distributed in areas where collisional orogenesiswas intensive and formed in a transitional stage from compression to extension. Therefore, goldmineralization in the Junggar orogen is fully consistent with the collisional orogenesis in time,space and geodynamic setting. This indicates that the mineral deposit model of collisionalorogenesis is applicable to prospecting and study of ore deposits in the Junggar orogen.Furthermore, the factual distribution of gold and other deposits in this region is just the same asthe collisional orogenic model presents.
文摘In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun North Qaidam North Qinling UHP metamorphic belt. The other is the Dabie Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite and microdiamond bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino Korean cratons, occurred during the Paleozoic. On the other hand, the well constrained Dabie Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intracontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts as a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino Korean cratons. Therefore, any dynamic model for the orogen must account for the development of UHP metamorphic rocks belonging to the separate two tectonic belts of different age and tectono metamorphic history.
文摘Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan Indosinian folding zone. In the north boundary adjoining the North China Block, there are an Early Palaeozoic ophiolitic mixtite belt and the Hefei Mesozoic Cenozoic faulted basin which overlaps on the suture belt. In the south of Dabie orogen, there is a secondary tectonic unit called Foreland thrust faulted structural zone which was mainly formed by the intracontinental subductions during Mesozoic era. The study shows that the Dabie Block is a part of mid late Proterozoic palaeo island arc at the north margin of Yangtze Block. During Caledonian period,as a submerged uplift at the northen continental margin of Yangtze Block, the Dabie Block collided with the early Palaeozoic palaeo island arc at the south margin of North China Block, resulting in the convergence of the North and South China Blocks and the disappearance of oceanic crust. Since then, large scale intracontinental subductions were followed. Dabie Orogenic Belt is the product of overlapping of Yangtze Block, Dabie Block and North China Block under the mechanism of intracontinental subduction. Indosinian period is the period of chief deformation and high pressure dynamic metamorphism for Dabie Block, and Yanshan period is the main orogenic period in which the remelting of crust caused by basement shearing resulted in large scale thermometamorphism. The present tectonic framework of the orogen was finally formed by the rapid uplifting of the Dabieshan mountains and gliding southwards, which result in the developing of thrust belt on south side and the extensional tectonic movement on north side.
文摘The orogenic process of the Central Orogenic Belt (COB) of China can basically be divided into two stages. The first stage was in the period of geosynclinal inversion or in the period of convergence of ancient 1andmasses. The second stage wholly occurred in an intracontinental environment within the diwa regime. The modern mountain ranges are rnainly the products of the second stage. This paper elaborates them in the light of information from different parts of the orogenic belt.