With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educationa...With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educational institutions have adopted virtual simulation technology.A typical teaching mechanism is to exploit Virtual Reality(VR)technology,which affords participants an immersive experience.Unquestionably,such a VRbased mode is highly approved.However,the performance of this technology requires further optimization.On one hand,for VR 360video,the current intraframe decision cannot adapt to rapid response demands.On the other hand,the generated data size is considerably large and fast computation may not be realized,depending on the local VR device.Therefore,this study proposes an improved teaching mechanism empowered by edge computing–driven VR,called VE4T,that involves two parts.First,an intraframe decision algorithm for VR 360videos is devised to realize the rapid responses.Second,an edge computing framework is proposed to offload some tasks to an edge server for computation,where a task scheduling strategy is developed to check whether a task needs to be offloaded.Finally,experiments are performed using a practical teaching scenario with some VR devices.The obtained results demonstrate that VE4T is more efficient than existing mechanisms.展开更多
基金supported by the Approved Project of Jilin Undergraduate Higher Education and Teaching Reform 2020(General Project).
文摘With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educational institutions have adopted virtual simulation technology.A typical teaching mechanism is to exploit Virtual Reality(VR)technology,which affords participants an immersive experience.Unquestionably,such a VRbased mode is highly approved.However,the performance of this technology requires further optimization.On one hand,for VR 360video,the current intraframe decision cannot adapt to rapid response demands.On the other hand,the generated data size is considerably large and fast computation may not be realized,depending on the local VR device.Therefore,this study proposes an improved teaching mechanism empowered by edge computing–driven VR,called VE4T,that involves two parts.First,an intraframe decision algorithm for VR 360videos is devised to realize the rapid responses.Second,an edge computing framework is proposed to offload some tasks to an edge server for computation,where a task scheduling strategy is developed to check whether a task needs to be offloaded.Finally,experiments are performed using a practical teaching scenario with some VR devices.The obtained results demonstrate that VE4T is more efficient than existing mechanisms.