期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Construction analysis on integral lifting of steel structure by the vector form intrinsic finite element 被引量:2
1
作者 朱明亮 陈雪琪 郭正兴 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期451-456,共6页
A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking... A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application. 展开更多
关键词 integral lifting vector form intrinsic finite element(VFIFE) steel gallery whole process of construction dynamic magnification factor
下载PDF
Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations 被引量:3
2
作者 LI Xiaomin GUO Xueli GUO Haiyan 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第3期498-506,共9页
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an... Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers. 展开更多
关键词 marine riser vector form intrinsic finite element (VFIFE) static analysis dynamic analysis geometric nonlinearity
下载PDF
Coupled Cross-Flow/in-Line Vortex-Induced Vibration Responses of a Catenary-Type Riser Subjected to Uniform Flows
3
作者 LI Xiaomin CAO Xi +1 位作者 LI Fuheng YANG Zhiwen 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1202-1212,共11页
A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite ... A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow. 展开更多
关键词 vortex-induced vibration vector form intrinsic finite element catenary-type riser wake oscillator equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部