Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simul...Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simultaneously by the AIRS(Atmospheric Infrared Sounder)and the VIIRS/DNB(Day/Night Band of the Visible Infrared Imager Radiometer Suite)in the stratosphere and mesosphere.Results showed that gravity waves(GWs)were generated by the collocated Hurricane Bejisa on the island of Mauritius.The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time(UTC)on 1 January 2014 and at 10:00 UTC on 2 January 2014,whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC.The characteristics of CGW parameters in the stratosphere(~40 km)and the mesosphere(~87 km),such as the vertical wavelength,intrinsic frequency,and intrinsic horizontal phase speed,were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory.展开更多
Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-dra...Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.展开更多
Characterization of gravity wave (GW) parameters for the stratosphere is critical for global atmospheric circulation models. These parameters are mainly determined from measurements. Here, we investigate variation i...Characterization of gravity wave (GW) parameters for the stratosphere is critical for global atmospheric circulation models. These parameters are mainly determined from measurements. Here, we investigate variation in inertial GW activity with season and latitude in the lower stratosphere (18-25 km) over China, using radiosonde data with a high vertical resolution over a 2-year period. Eight radiosonde stations were selected across China, with a latitudinal range of 22°-49°N. Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution, similar to other regions of the globe. The GW energy is highest in winter, and lowest in summer; it decreases with increasing latitude. Velocity perturbations with longitude and latitude are almost the same, indicating that GW energy is horizontally isotropic. Typically, 85% of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km, with a mean value of 2 kin; it is almost constant with latitude. Over 80% of all the horizontal wavelengths occur in the range 100-800 km, with a mean value of 450 km; they show a weak decrease with increasing latitude, yielding a difference of about 40 km over the 22°-49°N range. The ratio of horizontal wavelength over vertical wavelength is about 200:1, which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes. Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude; most values are between 1 and 2, with a mean value of 1.5. Study of the propagation directions of GW energy shows that upward fractions account for over 60% at all stations. In contrast, the horizontal propagation direction is significantly anisotropic, and is mainly along prevailing wind directions; this anisotropy weakens with increasing latitude.展开更多
High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Kle...High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz-um divided by the gate length.展开更多
基金the Strategic Priority Research Program of Chinese Academy of Sciences(no.XDA17010301)the National Key Research and Development Program of China(no.2016YFB0501503)+1 种基金the National Natural Science Foundation of China(nos.4190503811872128,91952111,41575031)part of the China Postdoctoral Foundation Program(no.2015M580124)。
文摘Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simultaneously by the AIRS(Atmospheric Infrared Sounder)and the VIIRS/DNB(Day/Night Band of the Visible Infrared Imager Radiometer Suite)in the stratosphere and mesosphere.Results showed that gravity waves(GWs)were generated by the collocated Hurricane Bejisa on the island of Mauritius.The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time(UTC)on 1 January 2014 and at 10:00 UTC on 2 January 2014,whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC.The characteristics of CGW parameters in the stratosphere(~40 km)and the mesosphere(~87 km),such as the vertical wavelength,intrinsic frequency,and intrinsic horizontal phase speed,were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory.
文摘Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.
基金supported by the National Natural Science Foundation of China(Grant Nos.41175040&91337214)
文摘Characterization of gravity wave (GW) parameters for the stratosphere is critical for global atmospheric circulation models. These parameters are mainly determined from measurements. Here, we investigate variation in inertial GW activity with season and latitude in the lower stratosphere (18-25 km) over China, using radiosonde data with a high vertical resolution over a 2-year period. Eight radiosonde stations were selected across China, with a latitudinal range of 22°-49°N. Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution, similar to other regions of the globe. The GW energy is highest in winter, and lowest in summer; it decreases with increasing latitude. Velocity perturbations with longitude and latitude are almost the same, indicating that GW energy is horizontally isotropic. Typically, 85% of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km, with a mean value of 2 kin; it is almost constant with latitude. Over 80% of all the horizontal wavelengths occur in the range 100-800 km, with a mean value of 450 km; they show a weak decrease with increasing latitude, yielding a difference of about 40 km over the 22°-49°N range. The ratio of horizontal wavelength over vertical wavelength is about 200:1, which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes. Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude; most values are between 1 and 2, with a mean value of 1.5. Study of the propagation directions of GW energy shows that upward fractions account for over 60% at all stations. In contrast, the horizontal propagation direction is significantly anisotropic, and is mainly along prevailing wind directions; this anisotropy weakens with increasing latitude.
文摘High frequency performance limits of graphene field-effect transistors (FETs) down to a channel length of 20 nm have been examined by using self-consistent quantum simulations. The results indicate that although Klein band-to-band tunneling is significant for sub-100 nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20 nm. At a channel length of 20 nm, the intrinsic cut-off frequency remains at a few THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. The intrinsic cut-off frequency is close to the LC characteristic frequency set by graphene kinetic inductance (L) and quantum capacitance (C), which is about 100 GHz-um divided by the gate length.