The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow...The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection.展开更多
The sample preparation of samples conlaining bovine serum albumin(BSA),e.g..as used in transdermal Franz diffusion cell(FDC) solutions,was evaluated using an analytical qualily-by-design(QbD)approach.Traditional...The sample preparation of samples conlaining bovine serum albumin(BSA),e.g..as used in transdermal Franz diffusion cell(FDC) solutions,was evaluated using an analytical qualily-by-design(QbD)approach.Traditional precipitation of BSA by adding an equal volume of organic solvent,often successfully used with conventional HPLC-PDA,was found insufficiently robust when novel fused-core HPLC and/or UPLC-MS methods were used.In this study,three factors(acetonitrile(%).formic acid(%) and boiling time(min)) were included in the experimental design to determine an optimal and more suitable sample treatment of BSAcontaining FDC solutions.Using a QbD and Derringer desirability(D) approach,combining BSA loss,dilution factor and variability,we constructed an optimal working space with the edge of failure defined as D〈0.9.The design space is modelled and is confirmed to have an ACN range of 83 ± 3% and FA content of 1 ±0.25%.展开更多
sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and...In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Vacuum loading has been examined as a way of preparing uniformly consolidated soft clay samples. The facility and loading procedure are described in this paper. An analytical solution to the three dimensional consolid...Vacuum loading has been examined as a way of preparing uniformly consolidated soft clay samples. The facility and loading procedure are described in this paper. An analytical solution to the three dimensional consolidation equation is derived for estimating the degree of consolidation of the soil sample with vacuum loading. The given example shows that the predicted degree of consolidation of a soft clay bulk with vacuum loading is close to that measured in the consolidation process.展开更多
The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelastic...The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.展开更多
Human face can be rebuilt to a three-dimensional (3 D) digital profile based on an optical 3D sensing system named Composite Fourier-Transform Profilometry (CFTP) where a composite structured light will be used. To st...Human face can be rebuilt to a three-dimensional (3 D) digital profile based on an optical 3D sensing system named Composite Fourier-Transform Profilometry (CFTP) where a composite structured light will be used. To study the sampling effect during the digitization process in practical CFTP, the pectinate function and convolution theorem were introduced to discuss the potential phase errors caused by sampling the composite pattern along two orthogonal directions. The selecting criterions of sampling frequencies are derived and the results indicate that to avoid spectral aliasing, the sampling frequency along the phrase variation direction must be at least four times as the baseband and along the orthogonal direction it must be at least three times as the larger frequency of the two carrier frequencies. The practical experiment of a model face reconstruction verified the theories.展开更多
Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a...Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a hot research topic and frontier in this field.However,due to the small number and uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk,the training model has insufficient generalization ability,and thus the prediction is not effective.In this paper,a drilling risk profile(depth domain)rich in geological and engineering information is constructed by introducing a quantitative evaluation method for drilling risk of drilled wells,which can provide sufficient risk sample data for model training and thus solve the small sample problem.For the problem of uneven distribution of drilling wells in new exploration areas,the concept of virtual wells and their deployment methods were proposed.Besides,two methods for calculating rock mechanical parameters of virtual wells were proposed,and the accuracy and applicability of the two methods are analyzed.The LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk profiles and multi-source data(e.g.,seismic,logging,and rock mechanical parameters).The model was validated to have an average relative error of 9.19%.The quantitative prediction of the drilling risk profile of the virtual well was achieved using the trained LSTM model and the calculation of the relevant parameters of the virtual well.Finally,based on the sequential Gaussian simulation method and the risk distribution of drilled and virtual wells,a regional 3D drilling risk model was constructed.The analysis of real cases shows that the addition of virtual wells can significantly improve the identification of regional drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved by up to 21%compared with the 3D risk model constructed based on drilled wells only.展开更多
By analyzing the theory of over-sampling and averaging, the conclusion is educed that white noise accompanies the signal and the addition of each bit of resolution can be achieved via a fourfold sampling frequency. Th...By analyzing the theory of over-sampling and averaging, the conclusion is educed that white noise accompanies the signal and the addition of each bit of resolution can be achieved via a fourfold sampling frequency. The addition of each bit will approximately increase the SNR (signal to noise ratio) to 6dB.展开更多
This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D...This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.展开更多
Recently a lot of medical tablets with special packets in the global market are available. For the safety and purity of the tablet, we need to scan it by developed scanner technology, which should be not more expensiv...Recently a lot of medical tablets with special packets in the global market are available. For the safety and purity of the tablet, we need to scan it by developed scanner technology, which should be not more expensive and easily available in the market. The THz technology is one of them. In the proposed work, we have tasted tablet images with the help of the THz super-resolution scanner, which is already available in our lab. The AI machine learning data concept has been investigated. Good resolution of images has been obtained. Furthermore, the challenging research problems are discussed. Finally, it summarizes the recent updates in terahertz technology for drug inspection and medical applications with potential research challenges.展开更多
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ...There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.展开更多
基金supported by the National Key Research and Development Program of China(2020YFB1807500)the National Natural Science Foundation of China(62072360,62001357,62172438,61901367)+4 种基金the key research and development plan of Shaanxi province(2021ZDLGY02-09,2023-GHZD-44,2023-ZDLGY-54)the Natural Science Foundation of Guangdong Province of China(2022A1515010988)Key Project on Artificial Intelligence of Xi'an Science and Technology Plan(2022JH-RGZN-0003,2022JH-RGZN-0103,2022JH-CLCJ-0053)Xi'an Science and Technology Plan(20RGZN0005)the Proof-ofconcept fund from Hangzhou Research Institute of Xidian University(GNYZ2023QC0201).
文摘The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection.
基金the Special Research Fund of Ghent University(BOF 01D23812 to Lien Taevernier and BOF O1J22510 to Evelien Wynendaele and Professor Bart De Spiegeleer)the Institute for the Promotion of Innovation through Science and Technology in Flanders(IWT 101529 to Matthias D'Hondt)for their financial funding
文摘The sample preparation of samples conlaining bovine serum albumin(BSA),e.g..as used in transdermal Franz diffusion cell(FDC) solutions,was evaluated using an analytical qualily-by-design(QbD)approach.Traditional precipitation of BSA by adding an equal volume of organic solvent,often successfully used with conventional HPLC-PDA,was found insufficiently robust when novel fused-core HPLC and/or UPLC-MS methods were used.In this study,three factors(acetonitrile(%).formic acid(%) and boiling time(min)) were included in the experimental design to determine an optimal and more suitable sample treatment of BSAcontaining FDC solutions.Using a QbD and Derringer desirability(D) approach,combining BSA loss,dilution factor and variability,we constructed an optimal working space with the edge of failure defined as D〈0.9.The design space is modelled and is confirmed to have an ACN range of 83 ± 3% and FA content of 1 ±0.25%.
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.U20A20197,62306187the Foundation of Ministry of Industry and Information Technology TC220H05X-04.
文摘In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘Vacuum loading has been examined as a way of preparing uniformly consolidated soft clay samples. The facility and loading procedure are described in this paper. An analytical solution to the three dimensional consolidation equation is derived for estimating the degree of consolidation of the soil sample with vacuum loading. The given example shows that the predicted degree of consolidation of a soft clay bulk with vacuum loading is close to that measured in the consolidation process.
基金financial support from the National Natural Science Foundation of China(Nos.52004137,52121003,51727807,12032013 and 11972209)Fundamental Research Funds for the Central Universities(No.2022XJAQ01)。
文摘The quantitative characterization of the full-field stress and displacement is significant for analyzing the failure and instability of engineering materials.Various optical measurement techniques such as photoelasticity,moiréand digital image correlation methods have been developed to achieve this goal.However,these methods are difficult to incorporate to determine the stress and displacement fields simultaneously because the tested models must contain particles and grating for displacement measurement;however,these elements will disturb the light passing through the tested models using photoelasticity.In this study,by combining photoelasticity and the sampling moirémethod,we developed a method to determine the stress and displacement fields simultaneously in a three-dimensional(3D)-printed photoelastic model with orthogonal grating.Then,the full-field stress was determined by analyzing 10 photoelastic patterns,and the displacement fields were calculated using the sampling moirémethod.The results indicate that the developed method can simultaneously determine the stress and displacement fields.
文摘Human face can be rebuilt to a three-dimensional (3 D) digital profile based on an optical 3D sensing system named Composite Fourier-Transform Profilometry (CFTP) where a composite structured light will be used. To study the sampling effect during the digitization process in practical CFTP, the pectinate function and convolution theorem were introduced to discuss the potential phase errors caused by sampling the composite pattern along two orthogonal directions. The selecting criterions of sampling frequencies are derived and the results indicate that to avoid spectral aliasing, the sampling frequency along the phrase variation direction must be at least four times as the baseband and along the orthogonal direction it must be at least three times as the larger frequency of the two carrier frequencies. The practical experiment of a model face reconstruction verified the theories.
基金General Program of National Natural Science Foundation of China(52274024,52074326)。
文摘Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a hot research topic and frontier in this field.However,due to the small number and uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk,the training model has insufficient generalization ability,and thus the prediction is not effective.In this paper,a drilling risk profile(depth domain)rich in geological and engineering information is constructed by introducing a quantitative evaluation method for drilling risk of drilled wells,which can provide sufficient risk sample data for model training and thus solve the small sample problem.For the problem of uneven distribution of drilling wells in new exploration areas,the concept of virtual wells and their deployment methods were proposed.Besides,two methods for calculating rock mechanical parameters of virtual wells were proposed,and the accuracy and applicability of the two methods are analyzed.The LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk profiles and multi-source data(e.g.,seismic,logging,and rock mechanical parameters).The model was validated to have an average relative error of 9.19%.The quantitative prediction of the drilling risk profile of the virtual well was achieved using the trained LSTM model and the calculation of the relevant parameters of the virtual well.Finally,based on the sequential Gaussian simulation method and the risk distribution of drilled and virtual wells,a regional 3D drilling risk model was constructed.The analysis of real cases shows that the addition of virtual wells can significantly improve the identification of regional drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved by up to 21%compared with the 3D risk model constructed based on drilled wells only.
文摘By analyzing the theory of over-sampling and averaging, the conclusion is educed that white noise accompanies the signal and the addition of each bit of resolution can be achieved via a fourfold sampling frequency. The addition of each bit will approximately increase the SNR (signal to noise ratio) to 6dB.
文摘This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.
文摘Recently a lot of medical tablets with special packets in the global market are available. For the safety and purity of the tablet, we need to scan it by developed scanner technology, which should be not more expensive and easily available in the market. The THz technology is one of them. In the proposed work, we have tasted tablet images with the help of the THz super-resolution scanner, which is already available in our lab. The AI machine learning data concept has been investigated. Good resolution of images has been obtained. Furthermore, the challenging research problems are discussed. Finally, it summarizes the recent updates in terahertz technology for drug inspection and medical applications with potential research challenges.
文摘There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.