期刊文献+
共找到291篇文章
< 1 2 15 >
每页显示 20 50 100
Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
1
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第7期1457-1490,共34页
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr... This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge. 展开更多
关键词 MACHINE-LEARNING Deep-Learning intrusion detection system security PRIVACY deep neural network NSL-KDD Dataset
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic
2
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Intrusion Detection Model Using Chaotic MAP for Network Coding Enabled Mobile Small Cells
3
作者 Chanumolu Kiran Kumar Nandhakumar Ramachandran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3151-3176,共26页
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a... Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high. 展开更多
关键词 Network coding small cells data transmission intrusion detection model hashed message authentication code chaotic sequence mapping secure transmission
下载PDF
Strengthening Network Security: Deep Learning Models for Intrusion Detectionwith Optimized Feature Subset and Effective Imbalance Handling
4
作者 Bayi Xu Lei Sun +2 位作者 Xiuqing Mao Chengwei Liu Zhiyi Ding 《Computers, Materials & Continua》 SCIE EI 2024年第2期1995-2022,共28页
In recent years,frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security.This paper presents a novel intrusion detection system consisting of a data prep... In recent years,frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security.This paper presents a novel intrusion detection system consisting of a data prepro-cessing stage and a deep learning model for accurately identifying network attacks.We have proposed four deep neural network models,which are constructed using architectures such as Convolutional Neural Networks(CNN),Bi-directional Long Short-Term Memory(BiLSTM),Bidirectional Gate Recurrent Unit(BiGRU),and Attention mechanism.These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models,we apply various preprocessing techniques and employ the particle swarm optimization algorithm to perform feature selection on the NSL-KDD dataset,resulting in an optimized feature subset.Moreover,we address class imbalance in the dataset using focal loss.Finally,we employ the BO-TPE algorithm to optimize the hyperparameters of the four models,maximizing their detection performance.The test results demonstrate that the proposed model is capable of extracting the spatiotemporal features of network traffic data effectively.In binary and multiclass experiments,it achieved accuracy rates of 0.999158 and 0.999091,respectively,surpassing other state-of-the-art methods. 展开更多
关键词 intrusion detection CNN BiLSTM BiGRU ATTENTION
下载PDF
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
5
作者 Zhihua Liu Shengquan Liu Jian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期411-433,共23页
Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(... Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance. 展开更多
关键词 intrusion detection industrial internet channel spatial attention multiscale features dynamic fusion multi-output learning strategy
下载PDF
A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM
6
作者 Navaneetha Krishnan Muthunambu Senthil Prabakaran +3 位作者 Balasubramanian Prabhu Kavin Kishore Senthil Siruvangur Kavitha Chinnadurai Jehad Ali 《Computers, Materials & Continua》 SCIE EI 2024年第3期3089-3127,共39页
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this d... The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques. 展开更多
关键词 CYBERSECURITY intrusion detection machine learning leveraging long short-term memory(LLSTM) CICIDS2019 dataset innovative cyberattacks
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks
7
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 Feature extraction Machine learning Network intrusion detection system IOT
下载PDF
MUS Model:A Deep Learning-Based Architecture for IoT Intrusion Detection
8
作者 Yu Yan Yu Yang +2 位作者 Shen Fang Minna Gao Yiding Chen 《Computers, Materials & Continua》 SCIE EI 2024年第7期875-896,共22页
In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion ... In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done. 展开更多
关键词 Cyberspace security intrusion detection deep learning Markov Transition Fields(MTF) soft voting integration
下载PDF
Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling
9
作者 Fei Wang Zhen Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2315-2329,共15页
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th... Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively. 展开更多
关键词 intrusion detection deep learning spiral convolution long and short term memory networks 1D-spiral convolution
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
10
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 Network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
ResNeSt-biGRU: An Intrusion Detection Model Based on Internet of Things
11
作者 Yan Xiang Daofeng Li +2 位作者 Xinyi Meng Chengfeng Dong Guanglin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第4期1005-1023,共19页
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has... The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems. 展开更多
关键词 Internet of Things cyberattack intrusion detection internet security
下载PDF
Lightweight Intrusion Detection Using Reservoir Computing
12
作者 Jiarui Deng Wuqiang Shen +4 位作者 Yihua Feng Guosheng Lu Guiquan Shen Lei Cui Shanxiang Lyu 《Computers, Materials & Continua》 SCIE EI 2024年第1期1345-1361,共17页
The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and... The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and complex network connections among nodes also make them more susceptible to adversarial attacks.As a result,an efficient intrusion detection system(IDS)becomes crucial for securing the IoV environment.Existing IDSs based on convolutional neural networks(CNN)often suffer from high training time and storage requirements.In this paper,we propose a lightweight IDS solution to protect IoV against both intra-vehicle and external threats.Our approach achieves superior performance,as demonstrated by key metrics such as accuracy and precision.Specifically,our method achieves accuracy rates ranging from 99.08% to 100% on the Car-Hacking dataset,with a remarkably short training time. 展开更多
关键词 Echo state network intrusion detection system Internet of Vehicles reservoir computing
下载PDF
A Novel Intrusion Detection Model of Unknown Attacks Using Convolutional Neural Networks
13
作者 Abdullah Alsaleh 《Computer Systems Science & Engineering》 2024年第2期431-449,共19页
With the increasing number of connected devices in the Internet of Things(IoT)era,the number of intrusions is also increasing.An intrusion detection system(IDS)is a secondary intelligent system for monitoring,detectin... With the increasing number of connected devices in the Internet of Things(IoT)era,the number of intrusions is also increasing.An intrusion detection system(IDS)is a secondary intelligent system for monitoring,detecting and alerting against malicious activity.IDS is important in developing advanced security models.This study reviews the importance of various techniques,tools,and methods used in IoT detection and/or prevention systems.Specifically,it focuses on machine learning(ML)and deep learning(DL)techniques for IDS.This paper proposes an accurate intrusion detection model to detect traditional and new attacks on the Internet of Vehicles.To speed up the detection of recent attacks,the proposed network architecture developed at the data processing layer is incorporated with a convolutional neural network(CNN),which performs better than a support vector machine(SVM).Processing data are enhanced using the synthetic minority oversampling technique to ensure learning accuracy.The nearest class mean classifier is applied during the testing phase to identify new attacks.Experimental results using the AWID dataset,which is one of the most common open intrusion detection datasets,revealed a higher detection accuracy(94%)compared to SVM and random forest methods. 展开更多
关键词 Internet of Vehicles intrusion detection machine learning unknown attacks data processing layer
下载PDF
Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances,Challenges and Future Directions
14
作者 Gulshan Kumar Hamed Alqahtani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期89-119,共31页
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)... Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field. 展开更多
关键词 CONTROLLER intrusion detection intrusion detection system OpenFlow security software defined networking traffic analysis
下载PDF
Network Intrusion Detection Model Using Fused Machine Learning Technique 被引量:1
15
作者 Fahad Mazaed Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第5期2479-2490,共12页
With the progress of advanced technology in the industrial revolution encompassing the Internet of Things(IoT)and cloud computing,cyberattacks have been increasing rapidly on a large scale.The rapid expansion of IoT a... With the progress of advanced technology in the industrial revolution encompassing the Internet of Things(IoT)and cloud computing,cyberattacks have been increasing rapidly on a large scale.The rapid expansion of IoT and networks in many forms generates massive volumes of data,which are vulnerable to security risks.As a result,cyberattacks have become a prevalent and danger to society,including its infrastructures,economy,and citizens’privacy,and pose a national security risk worldwide.Therefore,cyber security has become an increasingly important issue across all levels and sectors.Continuous progress is being made in developing more sophisticated and efficient intrusion detection and defensive methods.As the scale of complexity of the cyber-universe is increasing,advanced machine learning methods are the most appropriate solutions for predicting cyber threats.In this study,a fused machine learning-based intelligent model is proposed to detect intrusion in the early stage and thus secure networks from harmful attacks.Simulation results confirm the effectiveness of the proposed intrusion detection model,with 0.909 accuracy and a miss rate of 0.091. 展开更多
关键词 Cyberattack machine learning PREDICTION SOLUTION intrusion detection
下载PDF
Internet of things intrusion detection model and algorithm based on cloud computing and multi-feature extraction extreme learning machine 被引量:1
16
作者 Haifeng Lin Qilin Xue +1 位作者 Jiayin Feng Di Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第1期111-124,共14页
With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems... With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster. 展开更多
关键词 Internet of Things Cloud Computing intrusion Prevention intrusion detection Extreme Learning Machine
下载PDF
Enhanced Coyote Optimization with Deep Learning Based Cloud-Intrusion Detection System 被引量:1
17
作者 Abdullah M.Basahel Mohammad Yamin +1 位作者 Sulafah M.Basahel E.Laxmi Lydia 《Computers, Materials & Continua》 SCIE EI 2023年第2期4319-4336,共18页
Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achi... Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models. 展开更多
关键词 intrusion detection system cloud security coyote optimization algorithm class imbalance data deep learning
下载PDF
XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly 被引量:1
18
作者 Yuna Han Hangbae Chang 《Computers, Materials & Continua》 SCIE EI 2023年第7期221-237,共17页
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani... Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios. 展开更多
关键词 intrusion detection system(IDS) adaptive learning semi-supervised learning explainable artificial intelligence(XAI) monitoring system
下载PDF
MEM-TET: Improved Triplet Network for Intrusion Detection System 被引量:1
19
作者 Weifei Wang Jinguo Li +1 位作者 Na Zhao Min Liu 《Computers, Materials & Continua》 SCIE EI 2023年第7期471-487,共17页
With the advancement of network communication technology,network traffic shows explosive growth.Consequently,network attacks occur frequently.Network intrusion detection systems are still the primary means of detectin... With the advancement of network communication technology,network traffic shows explosive growth.Consequently,network attacks occur frequently.Network intrusion detection systems are still the primary means of detecting attacks.However,two challenges continue to stymie the development of a viable network intrusion detection system:imbalanced training data and new undiscovered attacks.Therefore,this study proposes a unique deep learning-based intrusion detection method.We use two independent in-memory autoencoders trained on regular network traffic and attacks to capture the dynamic relationship between traffic features in the presence of unbalanced training data.Then the original data is fed into the triplet network by forming a triplet with the data reconstructed from the two encoders to train.Finally,the distance relationship between the triples determines whether the traffic is an attack.In addition,to improve the accuracy of detecting unknown attacks,this research proposes an improved triplet loss function that is used to pull the distances of the same class closer while pushing the distances belonging to different classes farther in the learned feature space.The proposed approach’s effectiveness,stability,and significance are evaluated against advanced models on the Android Adware and General Malware Dataset(AAGM17),Knowledge Discovery and Data Mining Cup 1999(KDDCUP99),Canadian Institute for Cybersecurity Group’s Intrusion Detection Evaluation Dataset(CICIDS2017),UNSW-NB15,Network Security Lab-Knowledge Discovery and Data Mining(NSL-KDD)datasets.The achieved results confirmed the superiority of the proposed method for the task of network intrusion detection. 展开更多
关键词 intrusion detection memory-augmented autoencoder deep metric learning imbalance data
下载PDF
Online Intrusion Detection Mechanism Based on Model Migration in Intelligent Pumped Storage Power Stations 被引量:1
20
作者 Yue Zong Yuanlin Luo +5 位作者 Yuechao Wu Jiande Huang Bowen Yang Xiaoyu Kang Shumei Liu Yao Yu 《China Communications》 SCIE CSCD 2023年第4期368-381,共14页
With the continuous integration of new energy into the power grid,various new attacks continue to emerge and the feature distributions are constantly changing during the deployment of intelligent pumped storage power ... With the continuous integration of new energy into the power grid,various new attacks continue to emerge and the feature distributions are constantly changing during the deployment of intelligent pumped storage power stations.The intrusion detection model trained on the old data is hard to effectively identify new attacks,and it is difficult to update the intrusion detection model in time when lacking data.To solve this issue,by using model-based transfer learning methods,in this paper we propose a convolutional neural network(CNN)based transfer online sequential extreme learning machine(TOS-ELM)scheme to enable the online intrusion detection,which is called CNN-TOSELM in this paper.In our proposed scheme,we use pre-trained CNN to extract the characteristics of the target domain data as input,and then build online learning classifier TOS-ELM to transfer the parameter of the ELM classifier of the source domain.Experimental results show the proposed CNNTOSELM scheme can achieve better detection performance and extremely short model update time for intelligent pumped storage power stations. 展开更多
关键词 transfer learning intrusion detection online classification
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部