Blockchain merges technology with the Internet of Things(IoT)for addressing security and privacy-related issues.However,conventional blockchain suffers from scalability issues due to its linear structure,which increas...Blockchain merges technology with the Internet of Things(IoT)for addressing security and privacy-related issues.However,conventional blockchain suffers from scalability issues due to its linear structure,which increases the storage overhead,and Intrusion detection performed was limited with attack severity,leading to performance degradation.To overcome these issues,we proposed MZWB(Multi-Zone-Wise Blockchain)model.Initially,all the authenticated IoT nodes in the network ensure their legitimacy by using the Enhanced Blowfish Algorithm(EBA),considering several metrics.Then,the legitimately considered nodes for network construction for managing the network using Bayesian-Direct Acyclic Graph(B-DAG),which considers several metrics.The intrusion detection is performed based on two tiers.In the first tier,a Deep Convolution Neural Network(DCNN)analyzes the data packets by extracting packet flow features to classify the packets as normal,malicious,and suspicious.In the second tier,the suspicious packets are classified as normal or malicious using the Generative Adversarial Network(GAN).Finally,intrusion scenario performed reconstruction to reduce the severity of attacks in which Improved Monkey Optimization(IMO)is used for attack path discovery by considering several metrics,and the Graph cut utilized algorithm for attack scenario reconstruction(ASR).UNSW-NB15 and BoT-IoT utilized datasets for the MZWB method simulated using a Network simulator(NS-3.26).Compared with previous performance metrics such as energy consumption,storage overhead accuracy,response time,attack detection rate,precision,recall,and F-measure.The simulation result shows that the proposed MZWB method achieves high performance than existing works.展开更多
Security measures are urgently required to mitigate the recent rapid increase in network security attacks.Although methods employing machine learning have been researched and developed to detect various network attack...Security measures are urgently required to mitigate the recent rapid increase in network security attacks.Although methods employing machine learning have been researched and developed to detect various network attacks effectively,these are passive approaches that cannot protect the network from attacks,but detect them after the end of the session.Since such passive approaches cannot provide fundamental security solutions,we propose an active approach that can prevent further damage by detecting and blocking attacks in real time before the session ends.The proposed technology uses a two-level classifier structure:the first-stage classifier supports real-time classification,and the second-stage classifier supports accurate classification.Thus,the proposed approach can be used to determine whether an attack has occurred with high accuracy,even under heavy traffic.Through extensive evaluation,we confirm that our approach can provide a high detection rate in real time.Furthermore,because the proposed approach is fast,light,and easy to implement,it can be adopted in most existing network security equipment.Finally,we hope to mitigate the limitations of existing security systems,and expect to keep networks faster and safer from the increasing number of cyber-attacks.展开更多
The rapid growth of computer networks has changed the prospect of network security. An easy accessibility condition causes computer networks to be vulnerable against numerous and potentially devastating threats from h...The rapid growth of computer networks has changed the prospect of network security. An easy accessibility condition causes computer networks to be vulnerable against numerous and potentially devastating threats from hackers. Up to the moment, researchers have developed Intrusion Detection Systems (IDS) capable of detecting attacks in several available environments. A boundlessness of methods for misuse detection as well as anomaly detection has been applied. Intrusion Prevention Systems (IPS) evolved after that to resolve am-biguities in passive network monitoring by placing detection systems on the line of attack. IPS in other words is IDS that are able to give prevention commands to firewalls and access control changes to routers. IPS can be seen as an improvement upon firewall technologies. It can make access control decisions based on application content, rather than IP address or ports as traditional firewalls do. The next innovation is the combination of IDS and IPS known as Intrusion Detection and Prevention Systems (IDPS) capable of de-tecting and preventing attacks from happening. This paper presents an overview of IDPS followed by their classifications and applications. A new signature based IDPS architecture named HawkEye Solutions has been proposed by the authors. Authors have presented the basic building blocks of the IDS, which include mechanisms for carrying out TCP port scans, Traceroute scan, ping scan and packet sniffing to monitor net-work health detect various types of attacks. Real time implementation results of the system have been pre-sented. Finally a comparative analysis of various existing IDS/IPS solutions with HawkEye Solutions em-phasizes its significance.展开更多
In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect t...In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect their sensitive data from different vulnerabilities that they face every day. In this paper, a new methodology towards implementing an Intrusion Detection & Prevention System (IDPS) based on Artificial Neural Network (ANN) onto Field Programmable Gate Array (FPGA) is proposed. This system not only detects different network attacks but also prevents them from being propagated. The parallel structure of an ANN makes it potentially fast for the computation of certain tasks. FPGA platforms are the optimum and best choice for the modern digital systems nowadays. The same feature makes ANN well suited for implementation in FPGA technology. Hardware realization of ANN to a large extent depends on the efficient implementation of a single neuron. However FPGA realization of ANNs with a large number of neurons is still a challenging task. The proposed multilayer ANN based IDPS uses multiple neurons for higher performance and greater accuracy. Simulation of the design in MATLAB SIMULINK 2010b by using Knowledge Discovery and Data Mining (KDD) CUP dataset shows a very good performance. Subsequently MATLAB HDL coder was used to generate VHDL code for the proposed design that produced Intellectual Property (IP) cores for Xilinx Targeted Design Platforms. For evaluation purposes the proposed design was synthesized, implemented and tested onto Xilinx Virtex-7 2000T FPGA device.展开更多
Firstly, the general situation, influencing factors and damage of seawater intrusion in Qingdao City, Shandong Province were analyzed, and then some appropriate remedial measures were put forward, such as improving gr...Firstly, the general situation, influencing factors and damage of seawater intrusion in Qingdao City, Shandong Province were analyzed, and then some appropriate remedial measures were put forward, such as improving groundwater monitoring system in costal areas, exploiting groundwater reasonably, building underground cut-off walls and strengthening river management, which would provide a new approach for the prevention and control of seawater intrusion in Qingdao City.展开更多
With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems...With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster.展开更多
A new rule to detect intrusion based on IP weight, which is also well implemented in the rule base of author’s NMS, is presented. Compared with traditional ones, intrusion detecting based on IP weight enhanced analys...A new rule to detect intrusion based on IP weight, which is also well implemented in the rule base of author’s NMS, is presented. Compared with traditional ones, intrusion detecting based on IP weight enhanced analysis to packet content. The method also provides a real-time efficient way to analyze traffic on high-speed network and can help to increase valid usage rates of network resources. Practical implementation as a rule in the rule base of our NMS has verified that the rule can detect not only attacks on network, but also other unusual behaviors.展开更多
文摘Blockchain merges technology with the Internet of Things(IoT)for addressing security and privacy-related issues.However,conventional blockchain suffers from scalability issues due to its linear structure,which increases the storage overhead,and Intrusion detection performed was limited with attack severity,leading to performance degradation.To overcome these issues,we proposed MZWB(Multi-Zone-Wise Blockchain)model.Initially,all the authenticated IoT nodes in the network ensure their legitimacy by using the Enhanced Blowfish Algorithm(EBA),considering several metrics.Then,the legitimately considered nodes for network construction for managing the network using Bayesian-Direct Acyclic Graph(B-DAG),which considers several metrics.The intrusion detection is performed based on two tiers.In the first tier,a Deep Convolution Neural Network(DCNN)analyzes the data packets by extracting packet flow features to classify the packets as normal,malicious,and suspicious.In the second tier,the suspicious packets are classified as normal or malicious using the Generative Adversarial Network(GAN).Finally,intrusion scenario performed reconstruction to reduce the severity of attacks in which Improved Monkey Optimization(IMO)is used for attack path discovery by considering several metrics,and the Graph cut utilized algorithm for attack scenario reconstruction(ASR).UNSW-NB15 and BoT-IoT utilized datasets for the MZWB method simulated using a Network simulator(NS-3.26).Compared with previous performance metrics such as energy consumption,storage overhead accuracy,response time,attack detection rate,precision,recall,and F-measure.The simulation result shows that the proposed MZWB method achieves high performance than existing works.
基金This work was supported in part by the Information Technology Research Center(ITRC)Support Program supervised by the Institute for Information and Communications Technology Planning and Evaluation(IITP)(IITP-2020-2016-0-00313),and in part by and the 2021 Yeungnam University Research Grant.
文摘Security measures are urgently required to mitigate the recent rapid increase in network security attacks.Although methods employing machine learning have been researched and developed to detect various network attacks effectively,these are passive approaches that cannot protect the network from attacks,but detect them after the end of the session.Since such passive approaches cannot provide fundamental security solutions,we propose an active approach that can prevent further damage by detecting and blocking attacks in real time before the session ends.The proposed technology uses a two-level classifier structure:the first-stage classifier supports real-time classification,and the second-stage classifier supports accurate classification.Thus,the proposed approach can be used to determine whether an attack has occurred with high accuracy,even under heavy traffic.Through extensive evaluation,we confirm that our approach can provide a high detection rate in real time.Furthermore,because the proposed approach is fast,light,and easy to implement,it can be adopted in most existing network security equipment.Finally,we hope to mitigate the limitations of existing security systems,and expect to keep networks faster and safer from the increasing number of cyber-attacks.
文摘The rapid growth of computer networks has changed the prospect of network security. An easy accessibility condition causes computer networks to be vulnerable against numerous and potentially devastating threats from hackers. Up to the moment, researchers have developed Intrusion Detection Systems (IDS) capable of detecting attacks in several available environments. A boundlessness of methods for misuse detection as well as anomaly detection has been applied. Intrusion Prevention Systems (IPS) evolved after that to resolve am-biguities in passive network monitoring by placing detection systems on the line of attack. IPS in other words is IDS that are able to give prevention commands to firewalls and access control changes to routers. IPS can be seen as an improvement upon firewall technologies. It can make access control decisions based on application content, rather than IP address or ports as traditional firewalls do. The next innovation is the combination of IDS and IPS known as Intrusion Detection and Prevention Systems (IDPS) capable of de-tecting and preventing attacks from happening. This paper presents an overview of IDPS followed by their classifications and applications. A new signature based IDPS architecture named HawkEye Solutions has been proposed by the authors. Authors have presented the basic building blocks of the IDS, which include mechanisms for carrying out TCP port scans, Traceroute scan, ping scan and packet sniffing to monitor net-work health detect various types of attacks. Real time implementation results of the system have been pre-sented. Finally a comparative analysis of various existing IDS/IPS solutions with HawkEye Solutions em-phasizes its significance.
文摘In the 21st century with the exponential growth of the Internet, the vulnerability of the network which connects us is on the rise at a very fast pace. Today organizations are spending millions of dollars to protect their sensitive data from different vulnerabilities that they face every day. In this paper, a new methodology towards implementing an Intrusion Detection & Prevention System (IDPS) based on Artificial Neural Network (ANN) onto Field Programmable Gate Array (FPGA) is proposed. This system not only detects different network attacks but also prevents them from being propagated. The parallel structure of an ANN makes it potentially fast for the computation of certain tasks. FPGA platforms are the optimum and best choice for the modern digital systems nowadays. The same feature makes ANN well suited for implementation in FPGA technology. Hardware realization of ANN to a large extent depends on the efficient implementation of a single neuron. However FPGA realization of ANNs with a large number of neurons is still a challenging task. The proposed multilayer ANN based IDPS uses multiple neurons for higher performance and greater accuracy. Simulation of the design in MATLAB SIMULINK 2010b by using Knowledge Discovery and Data Mining (KDD) CUP dataset shows a very good performance. Subsequently MATLAB HDL coder was used to generate VHDL code for the proposed design that produced Intellectual Property (IP) cores for Xilinx Targeted Design Platforms. For evaluation purposes the proposed design was synthesized, implemented and tested onto Xilinx Virtex-7 2000T FPGA device.
基金Supported by Graduate student Scientific and Technical Innovation Foundation of Shandong University of Science & Technology (YCB120120)
文摘Firstly, the general situation, influencing factors and damage of seawater intrusion in Qingdao City, Shandong Province were analyzed, and then some appropriate remedial measures were put forward, such as improving groundwater monitoring system in costal areas, exploiting groundwater reasonably, building underground cut-off walls and strengthening river management, which would provide a new approach for the prevention and control of seawater intrusion in Qingdao City.
基金funded by the Key Research and Development plan of Jiangsu Province (Social Development)No.BE20217162Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project No.NJ2021-19.
文摘With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster.
文摘A new rule to detect intrusion based on IP weight, which is also well implemented in the rule base of author’s NMS, is presented. Compared with traditional ones, intrusion detecting based on IP weight enhanced analysis to packet content. The method also provides a real-time efficient way to analyze traffic on high-speed network and can help to increase valid usage rates of network resources. Practical implementation as a rule in the rule base of our NMS has verified that the rule can detect not only attacks on network, but also other unusual behaviors.