Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs...Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.展开更多
Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative ...Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.展开更多
Intuitionistic fuzzy sets have many applications in different sciences. In this paper we verify one of the applications of intuitionistic fuzzy sets in medical diagnosis according to the ideas of Shannon et al., Wang ...Intuitionistic fuzzy sets have many applications in different sciences. In this paper we verify one of the applications of intuitionistic fuzzy sets in medical diagnosis according to the ideas of Shannon et al., Wang and Xin, Grzregorzewski, Hung and Yang, and Yang and Chiclana. Actually by using the relationships between intuitionistic fuzzy sets and symptoms of patient we determine the kind of illness and finally we compare the methods.展开更多
基金partly supported by the National Natural Science Foundation of China(71371053)the Social Science Foundation of Fujian Province(FJ2015C111)
文摘Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.71740021,11861034,and 61966030)the Humanities Social Science Programming Project of Ministry of Education of China(No.20YJA630059)+1 种基金the Natural Science Foundation of Jiangxi Province of China(No.20192BAB207012)the Natural Science Foundation of Qinghai Province of China(No.2019-ZJ-7086).
文摘Based on the analyses of existing preference group decision-making(PGDM)methods with intuitionistic fuzzy preference relations(IFPRs),we present a new PGDM framework with incomplete IFPRs.A generalized multiplicative consistent for IFPRs is defined,and a mathematical programming model is constructed to supplement the missing values in incomplete IFPRs.Moreover,in this study,another mathematical programming model is constructed to improve the consistency level of unacceptably multiplicative consistent IFPRs.For group decisionmaking(GDM)with incomplete IFPRs,three reliable sources influencing the weights of experts are identified.Subsequently,a method for determining the weights of experts is developed by simultaneously considering three reliable sources.Furthermore,a targeted consensus process(CPR)is developed in this study with reference to the actual situation of the consensus level of each IFPR.Meanwhile,in response to the proposed multiplicative consistency definition,a novel method for determining the optimal priority weights of alternatives is redefined.Lastly,based on the above theory,a novel GDM method with incomplete IFPRs is developed,and the comparative and sensitivity analysis results demonstrate the utility and superiority of this work.
文摘Intuitionistic fuzzy sets have many applications in different sciences. In this paper we verify one of the applications of intuitionistic fuzzy sets in medical diagnosis according to the ideas of Shannon et al., Wang and Xin, Grzregorzewski, Hung and Yang, and Yang and Chiclana. Actually by using the relationships between intuitionistic fuzzy sets and symptoms of patient we determine the kind of illness and finally we compare the methods.