期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental investigation on performance of intumescent coating for steel plate at elevated temperature 被引量:2
1
作者 陈长坤 曾嘉伟 申秉银 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3151-3158,共8页
Twenty tests were conducted to investigate the efficiency of the intumescent coating designed to protect steel plate at the elevated temperature, by means of electrical furnace. And the factors of the initial thicknes... Twenty tests were conducted to investigate the efficiency of the intumescent coating designed to protect steel plate at the elevated temperature, by means of electrical furnace. And the factors of the initial thickness of coating and temperature of electrical furnace were considered. The high temperature response behavior of the intumescent coating was observed. And the expansion form of ultrathin intumescent coating and the temperature of the steel plate(TS) were obtained. Besides, the heat flux from expansion layer to steel plate versus time was analyzed in order to evaluate the heat transfer effect of intumescent coating on steel plate. The experimental results show that the response behaviors of the coating subjected to fire could be divided into four phases: stabilization phase, foaming expansion phase, carbonization-consumption phase and inorganic layer phase. And the net heat flux to the steel plate decreased observably in the foaming expansion phase, while the surplus white inorganic substance, which is the residue of the intumesced char layer in the inorganic layer phase under the condition of the temperature of the electrical furnace(TEF) beyond 700 °C over 1 h, has little effect on fire protection for the steel plate. 展开更多
关键词 ultrathin intumescent coating steel plate electrical furnace fire resistance
下载PDF
Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System 被引量:4
2
作者 Qandeel Fatima Gillan Faiz Ahmad +2 位作者 M.I.Abdul Mutalib Puteri S.M.Megat-Yusoff Sami Ullah 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第11期1286-1296,共11页
In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy syst... In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 ~C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 ~C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect ofHNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings. 展开更多
关键词 Polydimethylsiloxane (PDMS) Halloysite nanotubes (HNTs) intumescent fire retardant coatings (IFRC) Thermogravimetric analysis (TGA) Transmission electron microscopy (TEM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部