This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the...We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping.One type is the four-dimensional point defects.展开更多
Recently,a new excited baryon state,Ω(2012),was observed in the invariant mass spectra of𝐾K^(-)■^(0) and K_(S)^(0)■^(-)by the Belle collaboration.This state has a narrow width(∼6 MeV)compared to other bary...Recently,a new excited baryon state,Ω(2012),was observed in the invariant mass spectra of𝐾K^(-)■^(0) and K_(S)^(0)■^(-)by the Belle collaboration.This state has a narrow width(∼6 MeV)compared to other baryon states with a similar mass.Here,we provide a mini-review on the Ω(2012)state from the molecular perspective,where it appears to be a dynamically generated state with spin-parity 3/2^(−)from the coupled-channels interactions of the K■(1530)and ηΩ in s-wave and K■ in𝑑d-wave.Additionally,alternative explanations for the Ω(2012)resonance are also discussed.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by t...We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.展开更多
We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 wit...We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).展开更多
A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have...A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have an absolutely continuous invariant probability measure.展开更多
We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phasecorrelated method. From theoretical and numerical simulations, we find the space translation invaria...We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phasecorrelated method. From theoretical and numerical simulations, we find the space translation invariance of the bunching effect is a key point for the ghost imaging realization. Experimentally, we create the orderly phase-correlated discrete sources which can realize high-visibility second-order ghost imaging than the result with chaotic sources. Moreover, some factors affecting the visibility of ghost image are discussed in detail.展开更多
Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of thes...Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of these measures over time remains understudied.This research explores the structural components of the Center for Epidemiological Studies Depression Scale(CES-D)and examines its consistency across various living environments and temporal stability in a cohort of Chinese teenagers.Method:In the initial phase,1,042 adolescents furnished demographic details and undertook the CES-D assessment.After a three-month interval,967 of these participants repeated the CES-D evaluation.The study employed Confirmatory factor analysis(CFA)to scrutinize the scale’s structural integrity.We investigated factorial invariance by conducting a twopronged CFA:one comparing urban vs.rural backgrounds,and another contrasting the results from the initial assessment with those from the follow-up.Results:The CES-D demonstrated adequate reliability in both rural and urban high school student samples.The preliminary four-factor model applied to the CES-D demonstrated a good fit with the collected data.Invariance tests,including multigroup analyses comparing rural and urban samples and longitudinal assessments,confirmed the scale’s invariance.Conclusions:The results suggest that the CES-D serves as a reliable instrument for evaluating depressive symptoms among Chinese adolescents.Its applicability is consistent across different living environments and remains stable over time.展开更多
The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,ev...The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.展开更多
The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit form...The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.展开更多
By applying the rules for the sum of quark oscillation probabilities for the original CKM matrix and for Wolfenstein’s parameterization, equations were derived in which the CP violating phase for quarks appears as an...By applying the rules for the sum of quark oscillation probabilities for the original CKM matrix and for Wolfenstein’s parameterization, equations were derived in which the CP violating phase for quarks appears as an unknown quantity. Quark oscillations occur in spaces that are on the femtometer scale and they are unmeasurable from the point of view of experiments. However, the consequence of those oscillations is the CP violating phase for quarks, which is measured through unitary triangles in Wolfenstein’s parameterization. Through the mathematical model presented in this paper, the equation in Wolfenstein’s parameterization was derived, the root of which is consistent with measurements in today’s quark physics.展开更多
This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtaine...This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.展开更多
By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac...By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.展开更多
In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the ...A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the problem of convergence of Gauss iteration of a kind of pre-mean type mappings generated by the exponential and logarithmic functions.展开更多
The possibility of developing a complete graph invariant computable in polynomial time remains an open question. Consequently, creating efficient algorithms to verify non-isomorphism, including heuristic approaches, i...The possibility of developing a complete graph invariant computable in polynomial time remains an open question. Consequently, creating efficient algorithms to verify non-isomorphism, including heuristic approaches, is essential. Effective implementation of these heuristics necessitates both the adaptation of existing graph invariants and the invention of novel ones, which continues to be a relevant challenge. Numerous current invariants are capable of distinguishing a significant number of graphs rapidly in real-time scenarios. In this study, we present an invariant tailored for tournaments, a specific class of directed graphs. Tournaments are particularly intriguing because the count of distinct tournaments for a given number of vertices aligns with that of undirected graphs of the same size. The introduced invariant evaluates all possible tournament subsets derived from the original digraph that share the identical arc set. For each subset tournament, standard rankings are computed and aggregated to produce the final vertex scores, which serve as the new invariant. Our analysis indicates that this newly proposed invariant diverges from the most straightforward tournament invariant, which typically assigns scores to each participant. Preliminary computational tests demonstrate that the minimal correlation between the sequences generated by these two invariants occurs at a vertex count of 15.展开更多
Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale late...Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale lateral resolution).However,the conventional excitation source of rapidly diverging Gaussian beam imposes limitations on the depth of focus(DOF)in OR-PAM,which in turn affects the depth-resolving ability and detection sensitivity.Here,we proposed a flexible DOF,depth-invariant resolution photoacoustic microscopy(FDIR-PAM)with nondiffraction of Airy beams.The spatial light modulator was incorporated into the optical pathway of the excitation source with matched switching phase patterns,achieving the flexibly adjustable modulation parameters of the Airy beam.We conducted experiments on phantoms and intravital tissue to validate the effectiveness of the proposed approach for high sensitivity and highresolution characterization of variable topology of tissue,offering a promising DOF of 926μm with an invariant lateral resolution of 3.2μm,which is more than 17-fold larger compared to the Gaussian beam.In addition,FDIR-PAM successfully revealed clear individual zebrafish larvae and the pigment pattern of adult zebrafishes,as well as fine morphology of cerebral vasculature in a large depth range with high resolution,which has reached an evident resolving capability improvement of 62%mean value compared with the Gaussian beam.展开更多
The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tens...The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tensor, spin orbit and quadratic spin orbit terms with Gaussian radial dependence. The parameters of these interactions are so chosen in such a way that they represent the long-range attraction and the short-range repulsion of the nucleon-nucleon interactions. These parameters are so chosen to reproduce good agreement between the calculated values of the binding energy, the root mean-square radius, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of the deuteron nucleus. The variation method is then used to calculate the binding energy of triton by varying the oscillator parameter which exists in the nuclear wave function. The obtained nuclear wave functions are then used to calculate the root mean-square radius and the magnetic dipole moment of the triton.展开更多
This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and ...This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and intersect the switching manifold at two points and the switching manifold is composed of two perpendicular planes.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by the Natural Science Foundation of Beijing(Grant No.Z180007)the National Natural Science Foundation of China(Grant Nos.1157200511874003,and 51672018)。
文摘We propose a method to construct Hopf insulators based on the study of topological defects from the geometric perspective of Hopf invariant I.Firstly,we prove two types of topological defects naturally inhering in the inner differential structure of the Hopf mapping.One type is the four-dimensional point defects.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1606703)the National Natural Science Foundation of China(Grant Nos.12075288 and 12361141819)the Youth Innovation Promotion Association of CAS.
文摘Recently,a new excited baryon state,Ω(2012),was observed in the invariant mass spectra of𝐾K^(-)■^(0) and K_(S)^(0)■^(-)by the Belle collaboration.This state has a narrow width(∼6 MeV)compared to other baryon states with a similar mass.Here,we provide a mini-review on the Ω(2012)state from the molecular perspective,where it appears to be a dynamically generated state with spin-parity 3/2^(−)from the coupled-channels interactions of the K■(1530)and ηΩ in s-wave and K■ in𝑑d-wave.Additionally,alternative explanations for the Ω(2012)resonance are also discussed.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LR22A040001 and LY21A040004)the National Natural Science Foundation of China (Grant Nos.12074342 and 11835011)。
文摘We investigate the topological properties of a two-chain quantum ladder with uneven legs,i.e.,the two chains differ in their periods by a factor of 2.Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps.It also provides opportunities to explore fundamental concepts concerning band topology and edge modes,including the difference of intracellular and intercellular Zak phases,and the role of the inversion symmetry(IS).We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation.We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap,while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum.Furthermore,by projecting to the two sublattices,we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su–Schrieffer–Heeger model or the Rice–Mele model whose hopping amplitudes depend on the quasimomentum.In this way,the topological phases can be efficiently extracted through winding numbers.We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
基金Supported by the National Natural Science Foundation of China(11671373).
文摘We study a counterbalanced random walkS_(n)=X_(1)+…+X_(n),which is a discrete time non-Markovian process andX_(n) are given recursively as follows.For n≥2,X_(n) is a new independent sample from some fixed law̸=0 with a fixed probability p,andX_(n)=−X_(v(n))with probability 1−p,where v(n)is a uniform random variable on{1;…;n−1}.We apply martingale method to obtain a strong invariance principle forS_(n).
文摘A special class of cubic polynomials possessing decay of geometry property is studied.This class of cubic bimodal maps has generalized Fibonacci combinatorics.For maps with bounded combinatorics,we show that they have an absolutely continuous invariant probability measure.
基金Project supported by the National Natural Science Foundation of China(Grant No.62105188)。
文摘We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phasecorrelated method. From theoretical and numerical simulations, we find the space translation invariance of the bunching effect is a key point for the ghost imaging realization. Experimentally, we create the orderly phase-correlated discrete sources which can realize high-visibility second-order ghost imaging than the result with chaotic sources. Moreover, some factors affecting the visibility of ghost image are discussed in detail.
文摘Background:Valid and reliable measures of depressive symptoms are crucial for understanding risk factors,outcomes,and interventions across rural and urban settings.Despite this need,the longitudinal invariance of these measures over time remains understudied.This research explores the structural components of the Center for Epidemiological Studies Depression Scale(CES-D)and examines its consistency across various living environments and temporal stability in a cohort of Chinese teenagers.Method:In the initial phase,1,042 adolescents furnished demographic details and undertook the CES-D assessment.After a three-month interval,967 of these participants repeated the CES-D evaluation.The study employed Confirmatory factor analysis(CFA)to scrutinize the scale’s structural integrity.We investigated factorial invariance by conducting a twopronged CFA:one comparing urban vs.rural backgrounds,and another contrasting the results from the initial assessment with those from the follow-up.Results:The CES-D demonstrated adequate reliability in both rural and urban high school student samples.The preliminary four-factor model applied to the CES-D demonstrated a good fit with the collected data.Invariance tests,including multigroup analyses comparing rural and urban samples and longitudinal assessments,confirmed the scale’s invariance.Conclusions:The results suggest that the CES-D serves as a reliable instrument for evaluating depressive symptoms among Chinese adolescents.Its applicability is consistent across different living environments and remains stable over time.
文摘The AB(Aharonov-Bohm)effect is a pivotal quantum mechanical phenomenon that illustrates the fundamental role of the electromagnetic vector potential A in determining the phase of a charged particle’s wave function,even in regions where the magnetic field B is zero.This effect demonstrates that quantum particles are influenced not only by the fields directly present but also by the potentials associated with those fields.In the AB effect,an electron beam is split into two paths,with one path encircling a solenoid and the other bypassing it.Despite the absence of a magnetic field in the regions traversed by the beams,the vector potential A associated with the magnetic flux Φ through the solenoid induces a phase shift in the electron’s wave function.This phase shift,quantified by △φ=qΦ/hc,manifests as a change in the interference pattern observed in the detection screen.The phenomenon underscores the principle of gauge invariance in QED(quantum electrodynamics),where physical observables remain invariant under local gauge transformations of the vector and scalar potentials.This reinforces the notion that the vector potential A has a profound impact on quantum systems,beyond its classical role.This article outlines the AB effect,including its theoretical framework,experimental observations,and implications.The focus on the role of the vector potential in quantum mechanics provides a comprehensive understanding of this important phenomenon.
文摘The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.
文摘By applying the rules for the sum of quark oscillation probabilities for the original CKM matrix and for Wolfenstein’s parameterization, equations were derived in which the CP violating phase for quarks appears as an unknown quantity. Quark oscillations occur in spaces that are on the femtometer scale and they are unmeasurable from the point of view of experiments. However, the consequence of those oscillations is the CP violating phase for quarks, which is measured through unitary triangles in Wolfenstein’s parameterization. Through the mathematical model presented in this paper, the equation in Wolfenstein’s parameterization was derived, the root of which is consistent with measurements in today’s quark physics.
文摘This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.
文摘By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
文摘A function which is reflexive is called by pre-mean, a more generalized definition of a mean. In this paper, we define a new pre-mean and study its properties, and then using the given invariant curve we consider the problem of convergence of Gauss iteration of a kind of pre-mean type mappings generated by the exponential and logarithmic functions.
文摘The possibility of developing a complete graph invariant computable in polynomial time remains an open question. Consequently, creating efficient algorithms to verify non-isomorphism, including heuristic approaches, is essential. Effective implementation of these heuristics necessitates both the adaptation of existing graph invariants and the invention of novel ones, which continues to be a relevant challenge. Numerous current invariants are capable of distinguishing a significant number of graphs rapidly in real-time scenarios. In this study, we present an invariant tailored for tournaments, a specific class of directed graphs. Tournaments are particularly intriguing because the count of distinct tournaments for a given number of vertices aligns with that of undirected graphs of the same size. The introduced invariant evaluates all possible tournament subsets derived from the original digraph that share the identical arc set. For each subset tournament, standard rankings are computed and aggregated to produce the final vertex scores, which serve as the new invariant. Our analysis indicates that this newly proposed invariant diverges from the most straightforward tournament invariant, which typically assigns scores to each participant. Preliminary computational tests demonstrate that the minimal correlation between the sequences generated by these two invariants occurs at a vertex count of 15.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105255 and 62275210)the Xidian University Specially Funded Project for Interdisciplinary Exploration(Grant No.TZJH2024043)+1 种基金the Key Research and Development Program of Shaanxi Province(Grant No.2023-YBSF-293)the National Young Talent Program and Shaanxi Young Top-notch Talent Program,and the Fundamental Research Funds for CentralUniversities(Grant No.ZYTS23187).
文摘Optical-resolution photoacoustic microscopy(OR-PAM)has rapidly developed and is capable of characterizing optical absorption properties of biological tissue with high contrast and high resolution(micrometer-scale lateral resolution).However,the conventional excitation source of rapidly diverging Gaussian beam imposes limitations on the depth of focus(DOF)in OR-PAM,which in turn affects the depth-resolving ability and detection sensitivity.Here,we proposed a flexible DOF,depth-invariant resolution photoacoustic microscopy(FDIR-PAM)with nondiffraction of Airy beams.The spatial light modulator was incorporated into the optical pathway of the excitation source with matched switching phase patterns,achieving the flexibly adjustable modulation parameters of the Airy beam.We conducted experiments on phantoms and intravital tissue to validate the effectiveness of the proposed approach for high sensitivity and highresolution characterization of variable topology of tissue,offering a promising DOF of 926μm with an invariant lateral resolution of 3.2μm,which is more than 17-fold larger compared to the Gaussian beam.In addition,FDIR-PAM successfully revealed clear individual zebrafish larvae and the pigment pattern of adult zebrafishes,as well as fine morphology of cerebral vasculature in a large depth range with high resolution,which has reached an evident resolving capability improvement of 62%mean value compared with the Gaussian beam.
文摘The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of <sup>3</sup>H. The used residual two-body interactions consist of central, tensor, spin orbit and quadratic spin orbit terms with Gaussian radial dependence. The parameters of these interactions are so chosen in such a way that they represent the long-range attraction and the short-range repulsion of the nucleon-nucleon interactions. These parameters are so chosen to reproduce good agreement between the calculated values of the binding energy, the root mean-square radius, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of the deuteron nucleus. The variation method is then used to calculate the binding energy of triton by varying the oscillator parameter which exists in the nuclear wave function. The obtained nuclear wave functions are then used to calculate the root mean-square radius and the magnetic dipole moment of the triton.
文摘This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and intersect the switching manifold at two points and the switching manifold is composed of two perpendicular planes.