A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) o...A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) ordered triples of X with the property that the 3 coordinates of each ordered triple are distinct. An overlarge set of idempotent quasigroups of order n is a partition of T(n+1) into n+1 n(n-1)×3 partial orthogonal arrays A_x, x∈X based on X\{x}. This article gives an almost complete solution of overlarge sets of idempotent quasigroups.展开更多
Let F be a finitely generated free group. Martino and Ventura gave an explicit description for the fixed subgroups of automorphisms of F. The author generalizes their results to injective endomorphisms.
基金Supported by NSFC grant No. 10371002 (Y. Chang) and No.19901008 (J. Lei)
文摘A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) ordered triples of X with the property that the 3 coordinates of each ordered triple are distinct. An overlarge set of idempotent quasigroups of order n is a partition of T(n+1) into n+1 n(n-1)×3 partial orthogonal arrays A_x, x∈X based on X\{x}. This article gives an almost complete solution of overlarge sets of idempotent quasigroups.
基金supported by the National Natural Science Foundation of China(No.11201364)
文摘Let F be a finitely generated free group. Martino and Ventura gave an explicit description for the fixed subgroups of automorphisms of F. The author generalizes their results to injective endomorphisms.