Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the fie...Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.展开更多
Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(...Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.展开更多
Purpose:This study aims to explore how network intermediaries influence collaborative innovation performance within inter-organizational technological collaboration networks.Design/methodology/approach:This study empl...Purpose:This study aims to explore how network intermediaries influence collaborative innovation performance within inter-organizational technological collaboration networks.Design/methodology/approach:This study employs a mixed-method approach,combining quantitative social network analysis with regression techniques to investigate the role of network intermediaries in collaborative innovation performance.Using a patent dataset of Chinese industrial enterprises,the research constructs the collaboration networks and analyzes their structural positions,particularly focusing on their role as intermediaries,characterized by betweenness centrality.Negative binomial regression analysis is employed to assess how these network characteristics shape innovation outcomes.Findings:The study reveals that firms in intermediary positions enhance collaborative innovation performance,but this effect is nuanced.A key finding is that network clustering negatively moderates the intermediary-innovation relationship.Highly clustered networks,while fostering local collaboration,may limit the innovation potential of intermediaries.On the other hand,relationship strength,measured by collaboration intensity and trust among firms,positively moderates the intermediary-innovation link.Research limitations:This study has several limitations that present opportunities for further research.The reliance on quantitative social network analysis may overlook the complexity of intermediaries’roles,and future studies could benefit from incorporating qualitative methods to better understand cultural and institutional factors.Additionally,cross-country comparisons are needed to assess the consistency of these dynamics in different contexts.Practical implications:The study offers practical insights for firms and policymakers.Organizations should strategically position themselves as network intermediaries to access diverse information and resources,thereby improving innovation performance.Building strong trust helps using network intermediary advantages.For firms in highly clustered networks,it is important to seek external partners to avoid limiting their exposure to new ideas and technologies.This research emphasizes the need to balance network diversity with relationship strength for sustained innovation.Originality/value:This research contributes to the literature by offering new insights into the role of network intermediaries,presenting a comprehensive framework for understanding the interaction between network dynamics and firm innovation.展开更多
This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to sc...This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.展开更多
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w...Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.展开更多
Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese ...Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.展开更多
Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global...Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global AI research.Design/methodology/approach:We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science(WoS)and studied international collaboration from the perspectives of authors,institutions,and countries through bibliometric analysis and social network analysis.Findings:The bibliometric results show that in the field of AI,the number of published papers is increasing every year,and 84.8%of them are cooperative papers.Collaboration with more than three authors,collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns.Through social network analysis,this study found that the US,the UK,France,and Spain led global collaboration research in the field of AI at the country level,while Vietnam,Saudi Arabia,and United Arab Emirates had a high degree of international participation.Collaboration at the institution level reflects obvious regional and economic characteristics.There are the Developing Countries Institution Collaboration Group led by Iran,China,and Vietnam,as well as the Developed Countries Institution Collaboration Group led by the US,Canada,the UK.Also,the Chinese Academy of Sciences(China)plays an important,pivotal role in connecting the these institutional collaboration groups.Research limitations:First,participant contributions in international collaboration may have varied,but in our research they are viewed equally when building collaboration networks.Second,although the edge weight in the collaboration network is considered,it is only used to help reduce the network and does not reflect the strength of collaboration.Practical implications:The findings fill the current shortage of research on international collaboration in AI.They will help inform scientists and policy makers about the future of AI research.Originality/value:This work is the longest to date regarding international collaboration in the field of AI.This research explores the evolution,future trends,and major collaboration patterns of international collaboration in the field of AI over the past 35 years.It also reveals the leading countries,core groups,and characteristics of collaboration in the field of AI.展开更多
An ultra-dense network scenario is a scene where a large number of people assemble in a limited area to generate centralized broadband data traffic requirements.Because ultra-dense networks generate enormous traffic p...An ultra-dense network scenario is a scene where a large number of people assemble in a limited area to generate centralized broadband data traffic requirements.Because ultra-dense networks generate enormous traffic pressure,traditional network capabilities are not enough to accommodate the user s needs.Based on the description of ultra-dense network architecture,we analyze millimeter wave radio spectrum,high gain beam forming,physical layer frame structure,resource concentration and edge computing technology.In addition,the cooperative technology required by overlay and interference symbiosis in the dense network architecture as well as the access control technology of centralized access is analyzed and discussed comprehensively.展开更多
Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific coll...Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.展开更多
To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably ...To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably reproduce the empirical degree distributions for a number of we11-studied real-world collaboration networks. On the basis of the previous studies, in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors, including partial preferential attachment, partial random attachment and network growth speed. By using a rate equation method, we obtain an analytical formula for the act degree distribution. We discuss the dependence of the act degree distribution on these different dynamics factors. By fitting to the empirical data of two typical collaboration networks, we can extract the respective contributions of these dynamics factors to the evolution of each networks.展开更多
With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing ent...With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.展开更多
A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on ...A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.展开更多
Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid ass...Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid assigning subjective weights.Design/methodology/approach:We applied four centrality measures(degree centrality,betweenness centrality,closeness centrality and eigenvector centrality)and authors’published papers to the scientific collaboration network.The grey relational analysis(GRA)method based on information entropy was used to measure an author’s impact in the collaboration network.The weight of each evaluation index was determined based on information entropy.The ACM SIGKDD collaboration network was selected as an example to demonstrate the practicality and effectiveness of our method.Findings:Author influence was not always positively correlated with evaluation indexes such as degree centrality and betweenness centrality.This implies that combined effects of multiple indexes should be considered in author impact analysis.The introduction of the GRA method based on information entropy can reduce the interference of human factors in the evaluation process.Research limitations:We only analyzed author influence from the perspective of scientific collaboration,but the impact of citation on author influence was ignored.Practical implications:The proposed method can be also applied to detect influential authors in bibliographic co-citation network,author co-citation network,bibliographic coupling network or author coupling network.It would help facilitate scientific collaboration and enhance scholarly communication.Originality/value:This paper proposes an analytical method of evaluating author influence in scientific collaboration networks,in which combined effects of multiple indexes are considered and the interference of human factors is reduced in the evaluation process.展开更多
Efficient use of energy is an essential aspect of green building development.In order to achieve a more energy efficient society,innovation of solar photovoltaic(PV)technologies is a necessity.Collaboration between in...Efficient use of energy is an essential aspect of green building development.In order to achieve a more energy efficient society,innovation of solar photovoltaic(PV)technologies is a necessity.Collaboration between innovators is regarded as important for innovation;however,the existing literature has made few attempts to investigate how a collaboration network can affect technology innovation in the context of the solar PV sector.This study aims to fill this research gap.In this study,innovation activities are categorized as exploratory innovation and exploitative innovation.A conceptual framework and a series of hypotheses are proposed from the perspectives of network structure(including direct ties,indirect ties,and network efficiency)and network composition(such as geographical proximity,institutional proximity,and technological proximity).The empirical results show that in the solar PV sector of China,collaboration networks with different kinds of structure and composition can imply diverse effects on exploratory innovation and exploitative innovation.Followed with the derived results,it can be concluded that network collaboration is not always beneficial for PV technology innovation.The research findings could convey useful information to both practitioners and policy-makers to adopt appropriate strategies for promoting effective innovation collaboration.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
Collaborative vehicular networks is a key enabler to meet the stringent ultra-reliable and lowlatency communications(URLLC)requirements.A user vehicle(UV)dynamically optimizes task offloading by exploiting its collabo...Collaborative vehicular networks is a key enabler to meet the stringent ultra-reliable and lowlatency communications(URLLC)requirements.A user vehicle(UV)dynamically optimizes task offloading by exploiting its collaborations with edge servers and vehicular fog servers(VFSs).However,the optimization of task offloading in highly dynamic collaborative vehicular networks faces several challenges such as URLLC guaranteeing,incomplete information,and dimensionality curse.In this paper,we first characterize URLLC in terms of queuing delay bound violation and high-order statistics of excess backlogs.Then,a Deep Reinforcement lEarning-based URLLCAware task offloading algorithM named DREAM is proposed to maximize the throughput of the UVs while satisfying the URLLC constraints in a besteffort way.Compared with existing task offloading algorithms,DREAM achieves superior performance in throughput,queuing delay,and URLLC.展开更多
Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a ...Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a consistent and holistic way,without the need of understanding the underlying network structure.At present,SDN may face many challenges like insider attacks,i.e.,the centralized control plane would be attacked by malicious underlying devices and switches.To protect the security of SDN,effective detection approaches are indispensable.In the literature,challenge-based collaborative intrusion detection networks(CIDNs)are an effective detection framework in identifying malicious nodes.It calculates the nodes'reputation and detects a malicious node by sending out a special message called a challenge.In this work,we devise a challenge-based CIDN in SDN and measure its performance against malicious internal nodes.Our results demonstrate that such a mechanism can be effective in SDN environments.展开更多
In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative ...In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.展开更多
Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator...Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator recommendation tasks.Design/methodology/approach:We propose an academic collaborator recommendation model based on attributed network embedding(ACR-ANE),which can get enhanced scholar embedding and take full advantage of the topological structure of the network and multi-type scholar attributes.The non-local neighbors for scholars are defined to capture strong relationships among scholars.A deep auto-encoder is adopted to encode the academic collaboration network structure and scholar attributes into a low-dimensional representation space.Findings:1.The proposed non-local neighbors can better describe the relationships among scholars in the real world than the first-order neighbors.2.It is important to consider the structure of the academic collaboration network and scholar attributes when recommending collaborators for scholars simultaneously.Research limitations:The designed method works for static networks,without taking account of the network dynamics.Practical implications:The designed model is embedded in academic collaboration network structure and scholarly attributes,which can be used to help scholars recommend potential collaborators.Originality/value:Experiments on two real-world scholarly datasets,Aminer and APS,show that our proposed method performs better than other baselines.展开更多
Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and ana...Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and analysis for collaborative tracking via particle filter are presented in this paper. Collaborative tracking is implemented through sensor selection, and results of tracking are propagated among sensor nodes. In order to save communication resources, a new Gaussian sum particle filter, called Gaussian sum quasi particle filter, to perform the target tracking is presented, in which only mean and covariance of mixands need to be communicated. Based on the Gaussian sum quasi particle filter, a sensor selection criterion is proposed, which is computationally much simpler than other sensor selection criterions. Simulation results show that the proposed method works well for target tracking.展开更多
基金supported by grants from the National Natural Science Foundation of China No.NSFC62006109 and NSFC12031005the 13th Five-year plan for Education Science Funding of Guangdong Province No.2021GXJK349,No.2020GXJK457the Stable Support Plan Program of Shenzhen Natural Science Fund No.20220814165010001.
文摘Purpose:This study focuses on understanding the collaboration relationships among mathematicians,particularly those esteemed as elites,to reveal the structures of their communities and evaluate their impact on the field of mathematics.Design/methodology/approach:Two community detection algorithms,namely Greedy Modularity Maximization and Infomap,are utilized to examine collaboration patterns among mathematicians.We conduct a comparative analysis of mathematicians’centrality,emphasizing the influence of award-winning individuals in connecting network roles such as Betweenness,Closeness,and Harmonic centrality.Additionally,we investigate the distribution of elite mathematicians across communities and their relationships within different mathematical sub-fields.Findings:The study identifies the substantial influence exerted by award-winning mathematicians in connecting network roles.The elite distribution across the network is uneven,with a concentration within specific communities rather than being evenly dispersed.Secondly,the research identifies a positive correlation between distinct mathematical sub-fields and the communities,indicating collaborative tendencies among scientists engaged in related domains.Lastly,the study suggests that reduced research diversity within a community might lead to a higher concentration of elite scientists within that specific community.Research limitations:The study’s limitations include its narrow focus on mathematicians,which may limit the applicability of the findings to broader scientific fields.Issues with manually collected data affect the reliability of conclusions about collaborative networks.Practical implications:This study offers valuable insights into how elite mathematicians collaborate and how knowledge is disseminated within mathematical circles.Understanding these collaborative behaviors could aid in fostering better collaboration strategies among mathematicians and institutions,potentially enhancing scientific progress in mathematics.Originality/value:The study adds value to understanding collaborative dynamics within the realm of mathematics,offering a unique angle for further exploration and research.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA20010103)。
文摘Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration.
基金supported by the National Social Science Fund of China(No.22FGLB035)Fujian Provincial Federation of Social Sciences(No.FJ2023B109).
文摘Purpose:This study aims to explore how network intermediaries influence collaborative innovation performance within inter-organizational technological collaboration networks.Design/methodology/approach:This study employs a mixed-method approach,combining quantitative social network analysis with regression techniques to investigate the role of network intermediaries in collaborative innovation performance.Using a patent dataset of Chinese industrial enterprises,the research constructs the collaboration networks and analyzes their structural positions,particularly focusing on their role as intermediaries,characterized by betweenness centrality.Negative binomial regression analysis is employed to assess how these network characteristics shape innovation outcomes.Findings:The study reveals that firms in intermediary positions enhance collaborative innovation performance,but this effect is nuanced.A key finding is that network clustering negatively moderates the intermediary-innovation relationship.Highly clustered networks,while fostering local collaboration,may limit the innovation potential of intermediaries.On the other hand,relationship strength,measured by collaboration intensity and trust among firms,positively moderates the intermediary-innovation link.Research limitations:This study has several limitations that present opportunities for further research.The reliance on quantitative social network analysis may overlook the complexity of intermediaries’roles,and future studies could benefit from incorporating qualitative methods to better understand cultural and institutional factors.Additionally,cross-country comparisons are needed to assess the consistency of these dynamics in different contexts.Practical implications:The study offers practical insights for firms and policymakers.Organizations should strategically position themselves as network intermediaries to access diverse information and resources,thereby improving innovation performance.Building strong trust helps using network intermediary advantages.For firms in highly clustered networks,it is important to seek external partners to avoid limiting their exposure to new ideas and technologies.This research emphasizes the need to balance network diversity with relationship strength for sustained innovation.Originality/value:This research contributes to the literature by offering new insights into the role of network intermediaries,presenting a comprehensive framework for understanding the interaction between network dynamics and firm innovation.
基金Supported by the National Social Science Foundation of China(No.14CTQ045)China Postdoctoral Science Foundation(No.2015M570131)
文摘This study presents a clustering algorithm based on hierarchical expansion to solve the problem of community detection in scientific collaboration network. The characteristics of achievements information related to scientific and technological domains are analyzed,and then an ontology that represents their latent collaborative relations is built to detect clusters from the collaboration network. A case study is conducted to collect a data set of research achievements in the electric vehicle field and better clustering results are obtained. A hierarchical recommendation framework that enriches the domain ontologies and retrieves more relevant information resources is proposed in the last part of this paper. This work also lays out a novel insight into the exploitation of scientific collaboration network to better classify achievements information.
基金Hubei Provincial Natural Science Foundation of China under Grant No.2017CKB893Wuhan Polytechnic University Reform Subsidy Project Grant No.03220153.
文摘Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.
基金the University of Macao for financial support for this research by the project MYRG119(Y1-L3)-ICMS12-HYJ
文摘Objective: Better understanding of China's landscape in oncology drug research is of great significance for discovering anti-cancer drugs in future. This article differs from previous studies by focusing on Chinese oncology drug research communities in co-publication networks at the institutional level. Moreover, this research aims to explore structures and behaviors of relevant research units by thematic community analysis and to address policy recommendations. Methods: This research used social network analysis to define an institutions network and to identify a community network which is characterized by thematic content. Results: A total of 675 sample articles from 2008 through 2012 were retrieved from the Science Citation Index Expanded (SCIE) database of Web of Science, and top institutions and institutional pairs are highlighted for further discussion. Meanwhile, this study revealed that institutions based in the Chinese mainland are located in a relatively central position, Taiwan's institutions are closely assembled on the side, and Hong Kong's units located in the middle of the Chinese mainland's and Taiwan's. Spatial division and institutional hierarchy are still critical barriers to research collaboration in the field of anti-cancer drugs in China. In addition, the communities focusing on hot research areas show the higher nodal degree, whereas communities giving more attention to rare research subjects are relatively marginalized to the periphery of network. Conclusions= This paper offers policy recommendations to accelerate cross-regional cooperation, such as through developing information technology and increasing investment. The brokers should focus more on outreach to other institutions. Finally, participation in topics of common interest is conducive to improved efficiency in research and development (R&D) resource allocation.
基金We acknowledge the National Natural Science Foundation of China(Grant No.71673143)the National Social Science Foundation of China(Grant No.19BTQ062)for thier financial support.
文摘Purpose:This study aims to explore the trend and status of international collaboration in the field of artificial intelligence(AI)and to understand the hot topics,core groups,and major collaboration patterns in global AI research.Design/methodology/approach:We selected 38,224 papers in the field of AI from 1985 to 2019 in the core collection database of Web of Science(WoS)and studied international collaboration from the perspectives of authors,institutions,and countries through bibliometric analysis and social network analysis.Findings:The bibliometric results show that in the field of AI,the number of published papers is increasing every year,and 84.8%of them are cooperative papers.Collaboration with more than three authors,collaboration between two countries and collaboration within institutions are the three main levels of collaboration patterns.Through social network analysis,this study found that the US,the UK,France,and Spain led global collaboration research in the field of AI at the country level,while Vietnam,Saudi Arabia,and United Arab Emirates had a high degree of international participation.Collaboration at the institution level reflects obvious regional and economic characteristics.There are the Developing Countries Institution Collaboration Group led by Iran,China,and Vietnam,as well as the Developed Countries Institution Collaboration Group led by the US,Canada,the UK.Also,the Chinese Academy of Sciences(China)plays an important,pivotal role in connecting the these institutional collaboration groups.Research limitations:First,participant contributions in international collaboration may have varied,but in our research they are viewed equally when building collaboration networks.Second,although the edge weight in the collaboration network is considered,it is only used to help reduce the network and does not reflect the strength of collaboration.Practical implications:The findings fill the current shortage of research on international collaboration in AI.They will help inform scientists and policy makers about the future of AI research.Originality/value:This work is the longest to date regarding international collaboration in the field of AI.This research explores the evolution,future trends,and major collaboration patterns of international collaboration in the field of AI over the past 35 years.It also reveals the leading countries,core groups,and characteristics of collaboration in the field of AI.
文摘An ultra-dense network scenario is a scene where a large number of people assemble in a limited area to generate centralized broadband data traffic requirements.Because ultra-dense networks generate enormous traffic pressure,traditional network capabilities are not enough to accommodate the user s needs.Based on the description of ultra-dense network architecture,we analyze millimeter wave radio spectrum,high gain beam forming,physical layer frame structure,resource concentration and edge computing technology.In addition,the cooperative technology required by overlay and interference symbiosis in the dense network architecture as well as the access control technology of centralized access is analyzed and discussed comprehensively.
基金financial support from CNPq(the Brazilian federal grant agency).
文摘Currently, the collaboration in scientific communities has been studied in order to explain, among other things, the knowledge diffusion. The quality of Graduate Programmes is often associated with the scientific collaboration. This paper discusses how scientific collaboration processes can be identified and characterized through social and complex networks. For this purpose, collaboration networks of bibliographic production, research projects, and committees of PhD theses and Masters’ dissertations by researchers from a graduate program in computational modeling were studied. The data were obtained from CAPES’ reports of the period from 2001 to 2009. Among the studied indices, centrality indices indicate the presence of prominent researchers who influence others and promptly interact with other researchers in the network. The indices of complex networks reveal the presence of the small-world (i.e. these networks are favorable to increase coordination between researchers) phenomenon and indicate a behavior of scale-free degree distribution (i.e. some researchers promote clustering more than others) for one of the studied networks.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305139 and 11147178
文摘To describe the empirical data of collaboration networks, several evolving mechanisms have been proposed, which usually introduce different dynamics factors controlling the network growth. These models can reasonably reproduce the empirical degree distributions for a number of we11-studied real-world collaboration networks. On the basis of the previous studies, in this work we propose a collaboration network model in which the network growth is simultaneously controlled by three factors, including partial preferential attachment, partial random attachment and network growth speed. By using a rate equation method, we obtain an analytical formula for the act degree distribution. We discuss the dependence of the act degree distribution on these different dynamics factors. By fitting to the empirical data of two typical collaboration networks, we can extract the respective contributions of these dynamics factors to the evolution of each networks.
基金the National Natural Science Foundation of China(Grant Nos.51475347 and 51875429).
文摘With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.
基金Project(20090162110058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(KJ101210) supported by the Foundation of Chongqing Municipal Education Committee,China Project(2009GK3010) supported by the Hunan Science & Technology Foundation,China
文摘A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.
文摘Purpose:The purpose of this paper is to measure author influence in scientific collaboration networks by considering the combined effects of multiple indexes.In the meanwhile,we intend to explore a method to avoid assigning subjective weights.Design/methodology/approach:We applied four centrality measures(degree centrality,betweenness centrality,closeness centrality and eigenvector centrality)and authors’published papers to the scientific collaboration network.The grey relational analysis(GRA)method based on information entropy was used to measure an author’s impact in the collaboration network.The weight of each evaluation index was determined based on information entropy.The ACM SIGKDD collaboration network was selected as an example to demonstrate the practicality and effectiveness of our method.Findings:Author influence was not always positively correlated with evaluation indexes such as degree centrality and betweenness centrality.This implies that combined effects of multiple indexes should be considered in author impact analysis.The introduction of the GRA method based on information entropy can reduce the interference of human factors in the evaluation process.Research limitations:We only analyzed author influence from the perspective of scientific collaboration,but the impact of citation on author influence was ignored.Practical implications:The proposed method can be also applied to detect influential authors in bibliographic co-citation network,author co-citation network,bibliographic coupling network or author coupling network.It would help facilitate scientific collaboration and enhance scholarly communication.Originality/value:This paper proposes an analytical method of evaluating author influence in scientific collaboration networks,in which combined effects of multiple indexes are considered and the interference of human factors is reduced in the evaluation process.
基金supported by the Humanities and Social Sciences Grant,Ministry of Education(Grant No.17YJCZH191)Research Start-up Funding in Shenzhen(Grant No.000376).
文摘Efficient use of energy is an essential aspect of green building development.In order to achieve a more energy efficient society,innovation of solar photovoltaic(PV)technologies is a necessity.Collaboration between innovators is regarded as important for innovation;however,the existing literature has made few attempts to investigate how a collaboration network can affect technology innovation in the context of the solar PV sector.This study aims to fill this research gap.In this study,innovation activities are categorized as exploratory innovation and exploitative innovation.A conceptual framework and a series of hypotheses are proposed from the perspectives of network structure(including direct ties,indirect ties,and network efficiency)and network composition(such as geographical proximity,institutional proximity,and technological proximity).The empirical results show that in the solar PV sector of China,collaboration networks with different kinds of structure and composition can imply diverse effects on exploratory innovation and exploitative innovation.Followed with the derived results,it can be concluded that network collaboration is not always beneficial for PV technology innovation.The research findings could convey useful information to both practitioners and policy-makers to adopt appropriate strategies for promoting effective innovation collaboration.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金This work was partially supported by the Open Funding of the Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data under Grant Number IPBED3supported by the National Natural Science Foundation of China(NSFC)under Grant Number 61971189supported by the Fundamental Research Funds for the Central Universities under Grant Number 2020MS001.
文摘Collaborative vehicular networks is a key enabler to meet the stringent ultra-reliable and lowlatency communications(URLLC)requirements.A user vehicle(UV)dynamically optimizes task offloading by exploiting its collaborations with edge servers and vehicular fog servers(VFSs).However,the optimization of task offloading in highly dynamic collaborative vehicular networks faces several challenges such as URLLC guaranteeing,incomplete information,and dimensionality curse.In this paper,we first characterize URLLC in terms of queuing delay bound violation and high-order statistics of excess backlogs.Then,a Deep Reinforcement lEarning-based URLLCAware task offloading algorithM named DREAM is proposed to maximize the throughput of the UVs while satisfying the URLLC constraints in a besteffort way.Compared with existing task offloading algorithms,DREAM achieves superior performance in throughput,queuing delay,and URLLC.
基金This work was supported by National Natural Science Foundation of China(No.61802080 and 61802077)Guangdong General Colleges and Universities Research Project(2018GkQNCX105)+1 种基金Zhongshan Public Welfare Science and Technology Research Project(2019B2044)Keping Yu was supported in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a consistent and holistic way,without the need of understanding the underlying network structure.At present,SDN may face many challenges like insider attacks,i.e.,the centralized control plane would be attacked by malicious underlying devices and switches.To protect the security of SDN,effective detection approaches are indispensable.In the literature,challenge-based collaborative intrusion detection networks(CIDNs)are an effective detection framework in identifying malicious nodes.It calculates the nodes'reputation and detects a malicious node by sending out a special message called a challenge.In this work,we devise a challenge-based CIDN in SDN and measure its performance against malicious internal nodes.Our results demonstrate that such a mechanism can be effective in SDN environments.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. AA420060)
文摘In the course of network supported collaborative design, the data processing plays a very vital role. Much effort has been spent in this area, and many kinds of approaches have been proposed. Based on the correlative materials, this paper presents extensible markup language (XML) based strategy for several important problems of data processing in network supported collaborative design, such as the representation of standard for the exchange of product model data (STEP) with XML in the product information expression and the management of XML documents using relational database. The paper gives a detailed exposition on how to clarify the mapping between XML structure and the relationship database structure and how XML-QL queries can be translated into structured query language (SQL) queries. Finally, the structure of data processing system based on XML is presented.
基金supported by National Natural Science Foundation of China(No.61603310)the Fundamental Research Funds for the Central Universities(No.XDJK2018B019).
文摘Purpose:Based on real-world academic data,this study aims to use network embedding technology to mining academic relationships,and investigate the effectiveness of the proposed embedding model on academic collaborator recommendation tasks.Design/methodology/approach:We propose an academic collaborator recommendation model based on attributed network embedding(ACR-ANE),which can get enhanced scholar embedding and take full advantage of the topological structure of the network and multi-type scholar attributes.The non-local neighbors for scholars are defined to capture strong relationships among scholars.A deep auto-encoder is adopted to encode the academic collaboration network structure and scholar attributes into a low-dimensional representation space.Findings:1.The proposed non-local neighbors can better describe the relationships among scholars in the real world than the first-order neighbors.2.It is important to consider the structure of the academic collaboration network and scholar attributes when recommending collaborators for scholars simultaneously.Research limitations:The designed method works for static networks,without taking account of the network dynamics.Practical implications:The designed model is embedded in academic collaboration network structure and scholarly attributes,which can be used to help scholars recommend potential collaborators.Originality/value:Experiments on two real-world scholarly datasets,Aminer and APS,show that our proposed method performs better than other baselines.
基金Supported by the National Natural Science Foundation of China (No. 60372107)Ph.D. Innovation Program of Ji-angsu Province (No. 200670)+1 种基金Major Science Foundation of Jiangsu Province (BK2007729)Major Science Foundation of Jiangsu Universities (06KJ510001)
文摘Target tracking is one of the main applications of wireless sensor networks. Optimized computation and energy dissipation are critical requirements to save the limited resource of the sensor nodes. A framework and analysis for collaborative tracking via particle filter are presented in this paper. Collaborative tracking is implemented through sensor selection, and results of tracking are propagated among sensor nodes. In order to save communication resources, a new Gaussian sum particle filter, called Gaussian sum quasi particle filter, to perform the target tracking is presented, in which only mean and covariance of mixands need to be communicated. Based on the Gaussian sum quasi particle filter, a sensor selection criterion is proposed, which is computationally much simpler than other sensor selection criterions. Simulation results show that the proposed method works well for target tracking.