期刊文献+
共找到6,518篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
1
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis Heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
2
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
Robust optimal dispatch strategy of integrated energy system considering CHP-P2G-CCS
3
作者 Bin Zhang Yihui Xia Xiaotao Peng 《Global Energy Interconnection》 EI CSCD 2024年第1期14-24,共11页
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model... Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system. 展开更多
关键词 Combined heat and power Power-to-gas Carbon capture system integrated energy system Robust optimization
下载PDF
Two-Stage Optimal Scheduling of Community Integrated Energy System
4
作者 Ming Li Rifucairen Fu +4 位作者 Tuerhong Yaxiaer Yunping Zheng Abiao Huang Ronghui Liu Shunfu Lin 《Energy Engineering》 EI 2024年第2期405-424,共20页
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an... From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES. 展开更多
关键词 integrated energy system two-stage optimal scheduling controllable loads rolling optimization
下载PDF
Coordinated restoration optimization of power-gas integrated energy system with mobile emergency sources 被引量:1
5
作者 Lili Hao Wangyu Hu +4 位作者 Chuan Wang Guangzong Wang Yue Sun Jun Chen Xueping Pan 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期205-227,共23页
In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ... In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method. 展开更多
关键词 Coordinated restoration optimization integrated energy system Power-gas decoupling Gas-to-power flow optimization Mobile emergency source
下载PDF
Integrated Electrode-Electrolyte Optimization to Manufacture a Real-Life Applicable Aqueous Supercapacitor with Record-Breaking Lifespan
6
作者 Jichi Liu Chongchong Wu +3 位作者 Ian D.Gates Baohua Jia Zihang Huang Tianyi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期78-88,共11页
Aqueous supercapacitors(SCs)have been regarded as a promising candidate for commercial energy storage device due to their superior safety,low cost,and environmental benignity.Unfortunately,an age-old challenge of achi... Aqueous supercapacitors(SCs)have been regarded as a promising candidate for commercial energy storage device due to their superior safety,low cost,and environmental benignity.Unfortunately,an age-old challenge of achieving both long electrode lifespan and qualified energy-storage property blocks their practical application.Herein,we develop an electrode-electrolyte integrated optimization strategy to fulfill the real-life device requirements.Electrode optimization simultaneously regulates the nanomorphology and surface chemistry of the tungsten oxide anode,resulting in superior electrochemical performance given by an ideal“bird-nest”structure with optimal oxygen vacancy status;the anodes interact with and are protected from dissolution and structural collapse by the rationally designed hybrid electrolyte with optimized pH and facilitated cation desorption behavior.Collaboratively,a record-breaking durability of no capacitive decay after 250000 cycles is achieved.On the basis of this integrated optimization,the first aqueous pouch SCs with real-life practicability were manufactured by a soft-package encapsulation technique,which can steadily power commercial 3 C products such as tablets and smartphones and maintain safely working against extreme conditions.This work demonstrates the possibility of using aqueous energy storage devices with enhanced safety and lower cost to replace the commercial organic counterparts for wide range of daily applications. 展开更多
关键词 integrated electrode-electrolyte optimization real-life applicable supercapacitor record-breaking lifespan
下载PDF
Multi-subject and multi-objective integrated optimization system and implementation strategy for energy-saving renovation of the existing residential buildings
7
作者 GUO Han-ding JIN Zhen-xing +1 位作者 QIAO Wan-zhen ZHANG Yin-xian 《Ecological Economy》 2023年第2期149-162,共14页
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate... The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market. 展开更多
关键词 the existing residential buildings energy-saving renovation win-win cooperation multi-objective integration hierarchical optimization
下载PDF
Adaptive Integrated Coastal Zone Planning:History,Challenges,Advances,and Perspectives
8
作者 WANG Xinyi SU Fenzhen +4 位作者 WANG Xuege PAN Tingting CUI Yikun LYNE Vincent YAN Fengqin 《Chinese Geographical Science》 SCIE CSCD 2024年第4期599-617,共19页
Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable e... Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable environmental protection and economic development.In this study,we reviewed the history of coastal zone planning since its birth in the 1950s based on the literature retrieved from the Web of Science(Core Collection)from 2000–2023,then summarized the tools and spatial allocation methods commonly used in the planning process,and finally proposed potential solutions to the challenges faced.The results show that after decades of development,coastal zone planning has changed from a decentralized activity to a targeted and integrated one,with an increasing emphasis on the ecosystem approach and the use of multiple planning tools.Spatial analysis techniques and environmental modelling software have become increasingly popular.Linear programming and overlay analysis are common approaches when performing spatial optimization,but land-sea interactions and planning in the marine parts still lack in-depth analysis and practical experience.We are also aware that the challenges posed by the integration of administrative hierarchies,scoping and conservation objectives,stakeholder participation,consideration of social dimensions,and climate change are pervasive throughout the planning process.There is an urgent need to develop more flexible and accurate spatial modelling tools,as well as more efficient participatory methods,and to focus on the holistic nature of the land-sea system to create more resilient and sustainable coastal zones. 展开更多
关键词 integrated Coastal Zone Management(ICZM) coastal zone planning spatial optimization ecosystem-based management
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
9
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation
10
作者 Yan Shi Wenjie Li +2 位作者 Gongbo Fan Luxi Zhang Fengjiu Yang 《Energy Engineering》 EI 2024年第2期461-482,共22页
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c... Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach. 展开更多
关键词 integrated energy system carbon capture power plant confidence interval optimized scheduling
下载PDF
Data-driven source-load robust optimal scheduling of integrated energy production unit including hydrogen energy coupling 被引量:1
11
作者 Jinling Lu Dingyue Huang Hui Ren 《Global Energy Interconnection》 EI CSCD 2023年第4期375-388,共14页
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations... A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness. 展开更多
关键词 Hydrogen energy coupling DATA-DRIVEN Robust kernel density estimation Robust optimization integrated demand response
下载PDF
Electricity-Carbon Interactive Optimal Dispatch of Multi-Virtual Power Plant Considering Integrated Demand Response
12
作者 Shiwei Su Guangyong Hu +2 位作者 Xianghua Li Xin Li Wei Xiong 《Energy Engineering》 EI 2023年第10期2343-2368,共26页
As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t... As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions. 展开更多
关键词 Virtual power plant cluster carbon quota interaction electricity interaction integrated demand response user comprehensive satisfaction coordinated optimal operation
下载PDF
Multidisciplinary Design Optimization of A Human Occupied Vehicle Based on Bi-Level Integrated System Collaborative Optimization 被引量:4
13
作者 赵敏 崔维成 李翔 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期599-610,共12页
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend... The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO. 展开更多
关键词 Multidisciplinary Design optimization (MDO) Human Occupied Vehicle (HOD Bi-Level integrated SystemCollaborative optimization (BLISCO) general performance
下载PDF
Integrated Building Envelope Design Process Combining Parametric Modelling and Multi-Objective Optimization 被引量:4
14
作者 Dan Hou Gang Liu +2 位作者 Qi Zhang Lixiong Wang Rui Dang 《Transactions of Tianjin University》 EI CAS 2017年第2期138-146,共9页
As an important element in sustainable building design, the building envelope has been witnessing a constant shift in the design approach. Integrating multi-objective optimization(MOO) into the building envelope desig... As an important element in sustainable building design, the building envelope has been witnessing a constant shift in the design approach. Integrating multi-objective optimization(MOO) into the building envelope design process is very promising, but not easy to realize in an actual project due to several factors, including the complexity of optimization model construction, lack of a dynamic-visualization capacity in the simulation tools and consideration of how to match the optimization with the actual design process. To overcome these difficulties, this study constructed an integrated building envelope design process(IBEDP) based on parametric modelling, which was implemented using Grasshopper platform and interfaces to control the simulation software and optimization algorithm. A railway station was selected as a case study for applying the proposed IBEDP, which also utilized a grid-based variable design approach to achieve flexible optimum fenestrations. To facilitate the stepwise design process, a novel strategy was proposed with a two-step optimization, which optimized various categories of variables separately. Compared with a one-step optimization,though the proposed strategy performed poorly in the diversity of solutions, the quantitative assessment of the qualities of Pareto-optimum solution sets illustrates that it is superior. 展开更多
关键词 Parametric modelling MULTI-OBJECTIVE optimization (MOO) integrated building ENVELOPE design process (IBEDP) TWO-STEP optimization strategy
下载PDF
Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition 被引量:10
15
作者 Aijun Liu Michele Pfund John Fowler 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期422-433,共12页
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca... How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study. 展开更多
关键词 integrated manufacturing system optimization task decomposition task scheduling
下载PDF
Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning 被引量:3
16
作者 Lei Dong Jing Wei +1 位作者 Hao Lin Xinying Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期604-617,共14页
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co... The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents. 展开更多
关键词 integrated energy system Multi-agent system Distributed optimization Multi-agent deep deterministic policy gradient Real-time optimization decision
下载PDF
Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles 被引量:3
17
作者 Zunyi Duan Jun Yan +2 位作者 Ikjin Lee Jingyuan Wang Tao Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1084-1094,共11页
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re... Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries. 展开更多
关键词 integrated optimization MAXIMUM FUNDAMENTAL frequency Composite FRAME structures Continuous fiber WINDING angle SEMI-ANALYTICAL sensitivity analysis
下载PDF
Novel integrated optimization algorithm for trajectory planning of robot manipulators based on integrated evolutionary programming 被引量:1
18
作者 XiongLUO XiaopingFAN HengZHANG TefangCHEN 《控制理论与应用(英文版)》 EI 2004年第4期319-331,共13页
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat... Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost. 展开更多
关键词 Trajectory planning integrated optimization Evolutionary programming Robot manipulator
下载PDF
Multi-agent and ant colony optimization for ship integrated power system network reconfiguration 被引量:3
19
作者 WANG Zheng HU Zhiyuan YANG Xuanfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期489-496,共8页
Electric power is widely used as the main energy source of ship integrated power system(SIPS), which contains power network and electric power network. SIPS network reconfiguration is a non-linear large-scale problem.... Electric power is widely used as the main energy source of ship integrated power system(SIPS), which contains power network and electric power network. SIPS network reconfiguration is a non-linear large-scale problem. The reconfiguration solution influences the safety and stable operation of the power system. According to the operational characteristics of SIPS, a simplified model of power network and a mathematical model for network reconfiguration are established. Based on these models, a multi-agent and ant colony optimization(MAACO) is proposed to solve the problem of network reconfiguration. The simulations are carried out to demonstrate that the optimization method can reconstruct the integrated power system network accurately and efficiently. 展开更多
关键词 ship integrated power system(SIPS) multi-agent and ant colony optimization(MAACO) network reconfiguration ring grid fault recovery
下载PDF
Integrated Optimization of Structure and Control Parameters for the Height Control System of a Vertical Spindle Cotton Picker 被引量:1
20
作者 Xingzheng Chen Congbo Li +2 位作者 Rui Hu Ning Liu Chi Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期405-416,共12页
Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how... Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system. 展开更多
关键词 Cotton picker Height control system Structure parameters Control parameters integrated optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部