In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surf...In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surfaces using surface waves.In this study,the 3D velocity and anisotropy structure of a petroleum exploration area are obtained using the azimuth-dependent dispersion curve inversion(ADDCI)method.Imaging results show that low-velocity zones correspond to a river channel.The fast propagation direction(FPD)of S-waves along this channel is basically consistent with the direction of the channel.The eastern part of the study area has a surface sediment layer with a thickness of less than 20 m,which corresponds to the sand and gravel deposits formed by the river alluvial deposition near the surface.In addition,a relatively thick sedimentary layer is formed on the southern side of the study area.The anisotropy shows that the FPD is positively correlated with the direction of alluvial fl ow and that the magnitude of anisotropy in the deep part is greater than that in the shallow part.Inversion results are basically consistent with the geological data and suggest that the obtained model can truly refl ect the 3D velocity structure and anisotropy of the near-surface area.This study shows that the ADDCI method can maximize the high-energy surface waves in exploration data to obtain near-surface velocity structures,which provide a highly accurate model for near-surface static correction.展开更多
A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the Sout...A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.展开更多
Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This...Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.展开更多
This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave...This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.展开更多
The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured l...The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.展开更多
基金supported by the National Key Research and Development Program of China(No.2017YFC0601206)the Science and Technology Innovation(Seedling Project)Cultivation Program of Sichuan Province in 2020(No.2020127)the National Natural Science Foundation of China(Nos.41674059,41340009)。
文摘In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surfaces using surface waves.In this study,the 3D velocity and anisotropy structure of a petroleum exploration area are obtained using the azimuth-dependent dispersion curve inversion(ADDCI)method.Imaging results show that low-velocity zones correspond to a river channel.The fast propagation direction(FPD)of S-waves along this channel is basically consistent with the direction of the channel.The eastern part of the study area has a surface sediment layer with a thickness of less than 20 m,which corresponds to the sand and gravel deposits formed by the river alluvial deposition near the surface.In addition,a relatively thick sedimentary layer is formed on the southern side of the study area.The anisotropy shows that the FPD is positively correlated with the direction of alluvial fl ow and that the magnitude of anisotropy in the deep part is greater than that in the shallow part.Inversion results are basically consistent with the geological data and suggest that the obtained model can truly refl ect the 3D velocity structure and anisotropy of the near-surface area.This study shows that the ADDCI method can maximize the high-energy surface waves in exploration data to obtain near-surface velocity structures,which provide a highly accurate model for near-surface static correction.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235the Fundamental Research Funds for the central Universities of Ministry of Education of China under Grant No 3102014JC02010301
文摘A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.
基金funded by the National Key Project (No.2011ZX05035)the State Key Basic Research Program of China(No. 2009CB219603)the Project of Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXLX11-0334).
文摘Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.
文摘This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.
基金supported by the National Natural Science Foundation of China(10862003,40564001)the Innovative Research Team Building Programs of Inner Mongolia University for Nationalities
文摘The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.