This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea...Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.展开更多
This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs...This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.展开更多
The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation...The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute th...Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t k...is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenv...Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficie...The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.展开更多
An Inverse perturbation method is described for solving the general inverse eigenvalue problem. By taking the analysis of the rotor system as example based upon FEM, the new inverse perturbation method for structural ...An Inverse perturbation method is described for solving the general inverse eigenvalue problem. By taking the analysis of the rotor system as example based upon FEM, the new inverse perturbation method for structural design with specified low-order natural frequencies or frequency constraint bands is detailed as well as its complete theoretical basis. Moreover, formulations to calculate the inverse perturbation parameter ε and method to select the corresponding ε's value properly are also proposed. The proposed method is characterized in reducing frequency analysis and suitable for large and small structrual changes alike. Finally, several different numerical examples for inverse cigenvalue problem are discussed to illustrate the method, which show that this inverse perturbation method Is general and can be applied to other type of structure or dement.展开更多
This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary ...This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.展开更多
1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n co...1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix展开更多
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ...In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.展开更多
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
基金partially supported by the National Natural Science Foundation of China(No.11971020)Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund)。
文摘Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.
文摘This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.
基金Supported by the National Nature Science Foundation of China(12101356,12101357,12071254,11771253)the National Science Foundation of Shandong Province(ZR2021QA065,ZR2020QA009,ZR2021MA047)the China Postdoctoral Science Foundation(2019M662313)。
文摘The present paper deals with the eigenvalues of complex nonlocal Sturm-Liouville boundary value problems.The bounds of the real and imaginary parts of eigenvalues for the nonlocal Sturm-Liouville differential equation involving complex nonlocal potential terms associated with nonlocal boundary conditions are obtained in terms of the integrable conditions of coefficients and the real part of the eigenvalues.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
基金Project 19771020 supported by National Science Foundation of China
文摘is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
文摘Applying constructed homotopy and its properties,we gel some sufficient conditions for the solvability of algebraic inverse eigenvalue problems,which are better than that of the paper [4] in some cases. Inverse eigenvalue problems,solvability,sufficient conditions.
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金Science Developing Plan of Beijing Educational Committee, Beijing Natural Science Fund (No. 3022003), and NationalNatural Science Fund of China(No.50375002)
文摘The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.
基金This research is supported by China National Natural Science Foundation (CNNSF), Research Grant No. 50128504
文摘An Inverse perturbation method is described for solving the general inverse eigenvalue problem. By taking the analysis of the rotor system as example based upon FEM, the new inverse perturbation method for structural design with specified low-order natural frequencies or frequency constraint bands is detailed as well as its complete theoretical basis. Moreover, formulations to calculate the inverse perturbation parameter ε and method to select the corresponding ε's value properly are also proposed. The proposed method is characterized in reducing frequency analysis and suitable for large and small structrual changes alike. Finally, several different numerical examples for inverse cigenvalue problem are discussed to illustrate the method, which show that this inverse perturbation method Is general and can be applied to other type of structure or dement.
基金supported by the NSFC grant 11801143J.Lu’s research is partially supported by the NSFC grant 11901213+3 种基金the National Key Research and Development Program of China grant 2021YFA1002900supported by the NSFC grant 11801140,12171177the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology of China grant 2022HYTP0009the Program for Young Key Teacher of Henan Province of China grant 2021GGJS067.
文摘This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.
文摘1 IntroductionLet R<sup>n×n</sup> be the set of all n×n real matrices.R<sup>n</sup>=R<sup>n×1</sup>.C<sup>n×n</sup>denotes the set of all n×n complex matrices.We are interested in solving the following inverse eigenvalue prob-lems:Problem A (Additive inverse eigenvalue problem) Given an n×n real matrix A=(a<sub>ij</sub>),and n distinct real numbers λ<sub>1</sub>,λ<sub>2</sub>,…,λ<sub>n</sub>,find a real n×n diagonal matrix
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
文摘In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.