In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional ...This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.展开更多
An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness...An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.展开更多
This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several mo...This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.展开更多
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co...An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.展开更多
By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variable...By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
Due to the flexibility and feasibility of addressing ill-posed problems,the Bayesian method has been widely used in inverse heat conduction problems(IHCPs).However,in the real science and engineering IHCPs,the likelih...Due to the flexibility and feasibility of addressing ill-posed problems,the Bayesian method has been widely used in inverse heat conduction problems(IHCPs).However,in the real science and engineering IHCPs,the likelihood function of the Bayesian method is commonly computationally expensive or analytically unavailable.In this study,in order to circumvent this intractable likelihood function,the approximate Bayesian computation(ABC)is expanded to the IHCPs.In ABC,the high dimensional observations in the intractable likelihood function are equalized by their low dimensional summary statistics.Thus,the performance of the ABC depends on the selection of summary statistics.In this study,a machine learning-based ABC(ML-ABC)is proposed to address the complicated selections of the summary statistics.The Auto-Encoder(AE)is a powerful Machine Learning(ML)framework which can compress the observations into very low dimensional summary statistics with little information loss.In addition,in order to accelerate the calculation of the proposed framework,another neural network(NN)is utilized to construct the mapping between the unknowns and the summary statistics.With this mapping,given arbitrary unknowns,the summary statistics can be obtained efficiently without solving the time-consuming forward problem with numerical method.Furthermore,an adaptive nested sampling method(ANSM)is developed to further improve the efficiency of sampling.The performance of the proposed method is demonstrated with two IHCP cases.展开更多
To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several crit...To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several criteria. This idea is borrowed here to deal with generalized conduction equation and finite element criteria for eliminating oscillation and overbounding are also presented. Some new and useful conclusions are drawn.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
Finite element method (FEM) and differential quadrature method (DQM) are among important numerical techniques used in engineering analyses. Usually elements are sub-divided uniformly in FEM (conventional FEM, CFEM) to...Finite element method (FEM) and differential quadrature method (DQM) are among important numerical techniques used in engineering analyses. Usually elements are sub-divided uniformly in FEM (conventional FEM, CFEM) to obtain temperature distribution behavior in a fin or plate. Hence, extra computational complexity is needed to obtain a fair solution with required accuracy. In this paper, non-uniform sub-elements are considered for FEM (efficient FEM, EFEM) solution to reduce the computational complex-ity. Then this EFEM is applied for the solution of one-dimensional heat transfer problem in a rectangular thin fin. The obtained results are compared with CFEM and efficient DQM (EDQM), with non-uniform mesh generation). It is found that the EFEM exhibit more accurate results than CFEM and EDQM showing its potentiality.展开更多
The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dim...The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.展开更多
Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distri...This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible boundary using Dirichlet measurement data on the outer ac- cessible boundary. The main contribution in this work is to establish the some a priori error estimates in terms of the mesh size in the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature u and the adjoint state p under the lowest regularity assumption. It is revealed that the lower bounds of the convergence rates depend on the geometry of the domain. These a priori error estimates are of immense interest by themselves and pave the way for proving the convergence analysis of adaptive techniques applied to a general classes of inverse heat conduction problems. Numerical experiments are presented to verify our theoretical prediction.展开更多
The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse he...The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.展开更多
This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial ...This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.展开更多
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical p...Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.展开更多
We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities...We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.展开更多
The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealin...The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金This study was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.2015B37814)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYLX15_0489)+1 种基金the National Natural Science Foundation of China(Grant No.51679081)“the Fundamental Research Funds for the Central Universities”(Grant No.2018B48514).
文摘This paper aims to apply a virtual boundary element method(VBEM)to solve the inverse problems of three-dimensional heat conduction in orthotropic media.This method avoids the singular integrations in the conventional boundary element method,and can be treated as a potential approach for solving the inverse problems of the heat conduction owing to the boundary-only discretization and semi-analytical algorithm.When the VBEM is applied to the inverse problems,the numerical instability may occur if a virtual boundary is not properly chosen.The method encounters a highly illconditioned matrix for the larger distance between the physical boundary and the virtual boundary,and otherwise is hard to avoid the singularity of the source point.Thus,it must adopt an appropriate regularization method to deal with the ill-posed systems of inverse problems.In this study,the VBEM and different regularization techniques are combined to model the inverse problem of three-dimensional heat conduction in orthotropic media.The proper regularization techniques not only make the virtual boundary to be allocated freer,but also solve the ill-conditioned equation of the inverse problem.Numerical examples demonstrate that the proposed method is efficient,accurate and numerically stable for solving the inverse problems of three-dimensional heat conduction in orthotropic media.
基金supported by the Innovation Training Project for Students in NUAA(No.2016C-X0010-129)the Key Laboratory of Aircraft Environment Control and Life Support(NUAA),Ministry of Industry and Information Technology
文摘An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.
基金Project supported by the Key Disciplines of Shanghai Municipality (Grant No.S30104)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
基金supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269)the Fund of Xi'an Jiaotong University(No.2009xjtujc30)
文摘An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.
文摘By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
文摘Due to the flexibility and feasibility of addressing ill-posed problems,the Bayesian method has been widely used in inverse heat conduction problems(IHCPs).However,in the real science and engineering IHCPs,the likelihood function of the Bayesian method is commonly computationally expensive or analytically unavailable.In this study,in order to circumvent this intractable likelihood function,the approximate Bayesian computation(ABC)is expanded to the IHCPs.In ABC,the high dimensional observations in the intractable likelihood function are equalized by their low dimensional summary statistics.Thus,the performance of the ABC depends on the selection of summary statistics.In this study,a machine learning-based ABC(ML-ABC)is proposed to address the complicated selections of the summary statistics.The Auto-Encoder(AE)is a powerful Machine Learning(ML)framework which can compress the observations into very low dimensional summary statistics with little information loss.In addition,in order to accelerate the calculation of the proposed framework,another neural network(NN)is utilized to construct the mapping between the unknowns and the summary statistics.With this mapping,given arbitrary unknowns,the summary statistics can be obtained efficiently without solving the time-consuming forward problem with numerical method.Furthermore,an adaptive nested sampling method(ANSM)is developed to further improve the efficiency of sampling.The performance of the proposed method is demonstrated with two IHCP cases.
文摘To eliminate oscillation and overbounding of finite element solutions of classical heat conduction equation, the author and Xiao have put forward two new concepts of monotonies and have derived and proved several criteria. This idea is borrowed here to deal with generalized conduction equation and finite element criteria for eliminating oscillation and overbounding are also presented. Some new and useful conclusions are drawn.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘Finite element method (FEM) and differential quadrature method (DQM) are among important numerical techniques used in engineering analyses. Usually elements are sub-divided uniformly in FEM (conventional FEM, CFEM) to obtain temperature distribution behavior in a fin or plate. Hence, extra computational complexity is needed to obtain a fair solution with required accuracy. In this paper, non-uniform sub-elements are considered for FEM (efficient FEM, EFEM) solution to reduce the computational complex-ity. Then this EFEM is applied for the solution of one-dimensional heat transfer problem in a rectangular thin fin. The obtained results are compared with CFEM and efficient DQM (EDQM), with non-uniform mesh generation). It is found that the EFEM exhibit more accurate results than CFEM and EDQM showing its potentiality.
文摘The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.
文摘This paper is concerned with a priori error estimates of a finite element method for numerical reconstruction of some unknown distributed flux in an inverse heat conduction problem. More precisely, some unknown distributed Neumann data are to be recovered on the interior inaccessible boundary using Dirichlet measurement data on the outer ac- cessible boundary. The main contribution in this work is to establish the some a priori error estimates in terms of the mesh size in the domain and on the accessible/inaccessible boundaries, respectively, for both the temperature u and the adjoint state p under the lowest regularity assumption. It is revealed that the lower bounds of the convergence rates depend on the geometry of the domain. These a priori error estimates are of immense interest by themselves and pave the way for proving the convergence analysis of adaptive techniques applied to a general classes of inverse heat conduction problems. Numerical experiments are presented to verify our theoretical prediction.
文摘The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.
基金supported by the National Natural Science Foundation of China (10872050, 11172055)the Fundamental Research Funds for the Centred Universities (DUT11ZD(G)01)
文摘This paper presents a new strategy of using the radial integration boundary element method (RIBEM) to solve non-homogeneous heat conduction and thermoelasticity problems. In the method, the evaluation of the radial in-tegral which is used to transform domain integrals to equivalent boundary integrals is carried out on the basis of elemental nodes. As a result, the computational time spent in evaluating domain integrals can be saved considerably in comparison with the conventional RIBEM. Three numerical examples are given to demonstrate the correctness and computational efficiency of the proposed approach.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)Shanghai Leading Academic Discipline Project (No. J50101)
文摘Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
基金the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344LBNL under DE-AC0205CH11231 was supported by the Director,Office ofScience of the U.S.Department of Energy and the Petascale Initiative in Computational Science and Engineeringthe National Energy Research Scientific Computing Center,supported by the Office of Science,U.S.Department of Energy under Contract No.DE-AC02-05CH11231.
文摘We present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffu- sion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.
文摘The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.